Step |
Hyp |
Ref |
Expression |
1 |
|
musumsum.1 |
β’ ( π = 1 β π΅ = πΆ ) |
2 |
|
musumsum.2 |
β’ ( π β π΄ β Fin ) |
3 |
|
musumsum.3 |
β’ ( π β π΄ β β ) |
4 |
|
musumsum.4 |
β’ ( π β 1 β π΄ ) |
5 |
|
musumsum.5 |
β’ ( ( π β§ π β π΄ ) β π΅ β β ) |
6 |
3
|
sselda |
β’ ( ( π β§ π β π΄ ) β π β β ) |
7 |
|
musum |
β’ ( π β β β Ξ£ π β { π β β β£ π β₯ π } ( ΞΌ β π ) = if ( π = 1 , 1 , 0 ) ) |
8 |
6 7
|
syl |
β’ ( ( π β§ π β π΄ ) β Ξ£ π β { π β β β£ π β₯ π } ( ΞΌ β π ) = if ( π = 1 , 1 , 0 ) ) |
9 |
8
|
oveq1d |
β’ ( ( π β§ π β π΄ ) β ( Ξ£ π β { π β β β£ π β₯ π } ( ΞΌ β π ) Β· π΅ ) = ( if ( π = 1 , 1 , 0 ) Β· π΅ ) ) |
10 |
|
fzfid |
β’ ( ( π β§ π β π΄ ) β ( 1 ... π ) β Fin ) |
11 |
|
dvdsssfz1 |
β’ ( π β β β { π β β β£ π β₯ π } β ( 1 ... π ) ) |
12 |
6 11
|
syl |
β’ ( ( π β§ π β π΄ ) β { π β β β£ π β₯ π } β ( 1 ... π ) ) |
13 |
10 12
|
ssfid |
β’ ( ( π β§ π β π΄ ) β { π β β β£ π β₯ π } β Fin ) |
14 |
|
elrabi |
β’ ( π β { π β β β£ π β₯ π } β π β β ) |
15 |
|
mucl |
β’ ( π β β β ( ΞΌ β π ) β β€ ) |
16 |
14 15
|
syl |
β’ ( π β { π β β β£ π β₯ π } β ( ΞΌ β π ) β β€ ) |
17 |
16
|
zcnd |
β’ ( π β { π β β β£ π β₯ π } β ( ΞΌ β π ) β β ) |
18 |
17
|
adantl |
β’ ( ( ( π β§ π β π΄ ) β§ π β { π β β β£ π β₯ π } ) β ( ΞΌ β π ) β β ) |
19 |
13 5 18
|
fsummulc1 |
β’ ( ( π β§ π β π΄ ) β ( Ξ£ π β { π β β β£ π β₯ π } ( ΞΌ β π ) Β· π΅ ) = Ξ£ π β { π β β β£ π β₯ π } ( ( ΞΌ β π ) Β· π΅ ) ) |
20 |
|
ovif |
β’ ( if ( π = 1 , 1 , 0 ) Β· π΅ ) = if ( π = 1 , ( 1 Β· π΅ ) , ( 0 Β· π΅ ) ) |
21 |
|
velsn |
β’ ( π β { 1 } β π = 1 ) |
22 |
21
|
bicomi |
β’ ( π = 1 β π β { 1 } ) |
23 |
22
|
a1i |
β’ ( π΅ β β β ( π = 1 β π β { 1 } ) ) |
24 |
|
mullid |
β’ ( π΅ β β β ( 1 Β· π΅ ) = π΅ ) |
25 |
|
mul02 |
β’ ( π΅ β β β ( 0 Β· π΅ ) = 0 ) |
26 |
23 24 25
|
ifbieq12d |
β’ ( π΅ β β β if ( π = 1 , ( 1 Β· π΅ ) , ( 0 Β· π΅ ) ) = if ( π β { 1 } , π΅ , 0 ) ) |
27 |
5 26
|
syl |
β’ ( ( π β§ π β π΄ ) β if ( π = 1 , ( 1 Β· π΅ ) , ( 0 Β· π΅ ) ) = if ( π β { 1 } , π΅ , 0 ) ) |
28 |
20 27
|
eqtrid |
β’ ( ( π β§ π β π΄ ) β ( if ( π = 1 , 1 , 0 ) Β· π΅ ) = if ( π β { 1 } , π΅ , 0 ) ) |
29 |
9 19 28
|
3eqtr3d |
β’ ( ( π β§ π β π΄ ) β Ξ£ π β { π β β β£ π β₯ π } ( ( ΞΌ β π ) Β· π΅ ) = if ( π β { 1 } , π΅ , 0 ) ) |
30 |
29
|
sumeq2dv |
β’ ( π β Ξ£ π β π΄ Ξ£ π β { π β β β£ π β₯ π } ( ( ΞΌ β π ) Β· π΅ ) = Ξ£ π β π΄ if ( π β { 1 } , π΅ , 0 ) ) |
31 |
4
|
snssd |
β’ ( π β { 1 } β π΄ ) |
32 |
31
|
sselda |
β’ ( ( π β§ π β { 1 } ) β π β π΄ ) |
33 |
32 5
|
syldan |
β’ ( ( π β§ π β { 1 } ) β π΅ β β ) |
34 |
33
|
ralrimiva |
β’ ( π β β π β { 1 } π΅ β β ) |
35 |
2
|
olcd |
β’ ( π β ( π΄ β ( β€β₯ β 1 ) β¨ π΄ β Fin ) ) |
36 |
|
sumss2 |
β’ ( ( ( { 1 } β π΄ β§ β π β { 1 } π΅ β β ) β§ ( π΄ β ( β€β₯ β 1 ) β¨ π΄ β Fin ) ) β Ξ£ π β { 1 } π΅ = Ξ£ π β π΄ if ( π β { 1 } , π΅ , 0 ) ) |
37 |
31 34 35 36
|
syl21anc |
β’ ( π β Ξ£ π β { 1 } π΅ = Ξ£ π β π΄ if ( π β { 1 } , π΅ , 0 ) ) |
38 |
1
|
eleq1d |
β’ ( π = 1 β ( π΅ β β β πΆ β β ) ) |
39 |
5
|
ralrimiva |
β’ ( π β β π β π΄ π΅ β β ) |
40 |
38 39 4
|
rspcdva |
β’ ( π β πΆ β β ) |
41 |
1
|
sumsn |
β’ ( ( 1 β π΄ β§ πΆ β β ) β Ξ£ π β { 1 } π΅ = πΆ ) |
42 |
4 40 41
|
syl2anc |
β’ ( π β Ξ£ π β { 1 } π΅ = πΆ ) |
43 |
30 37 42
|
3eqtr2d |
β’ ( π β Ξ£ π β π΄ Ξ£ π β { π β β β£ π β₯ π } ( ( ΞΌ β π ) Β· π΅ ) = πΆ ) |