| Step |
Hyp |
Ref |
Expression |
| 1 |
|
musumsum.1 |
|
| 2 |
|
musumsum.2 |
|
| 3 |
|
musumsum.3 |
|
| 4 |
|
musumsum.4 |
|
| 5 |
|
musumsum.5 |
|
| 6 |
3
|
sselda |
|
| 7 |
|
musum |
|
| 8 |
6 7
|
syl |
|
| 9 |
8
|
oveq1d |
|
| 10 |
|
fzfid |
|
| 11 |
|
dvdsssfz1 |
|
| 12 |
6 11
|
syl |
|
| 13 |
10 12
|
ssfid |
|
| 14 |
|
elrabi |
|
| 15 |
|
mucl |
|
| 16 |
14 15
|
syl |
|
| 17 |
16
|
zcnd |
|
| 18 |
17
|
adantl |
|
| 19 |
13 5 18
|
fsummulc1 |
|
| 20 |
|
ovif |
|
| 21 |
|
velsn |
|
| 22 |
21
|
bicomi |
|
| 23 |
22
|
a1i |
|
| 24 |
|
mullid |
|
| 25 |
|
mul02 |
|
| 26 |
23 24 25
|
ifbieq12d |
|
| 27 |
5 26
|
syl |
|
| 28 |
20 27
|
eqtrid |
|
| 29 |
9 19 28
|
3eqtr3d |
|
| 30 |
29
|
sumeq2dv |
|
| 31 |
4
|
snssd |
|
| 32 |
31
|
sselda |
|
| 33 |
32 5
|
syldan |
|
| 34 |
33
|
ralrimiva |
|
| 35 |
2
|
olcd |
|
| 36 |
|
sumss2 |
|
| 37 |
31 34 35 36
|
syl21anc |
|
| 38 |
1
|
eleq1d |
|
| 39 |
5
|
ralrimiva |
|
| 40 |
38 39 4
|
rspcdva |
|
| 41 |
1
|
sumsn |
|
| 42 |
4 40 41
|
syl2anc |
|
| 43 |
30 37 42
|
3eqtr2d |
|