| Step |
Hyp |
Ref |
Expression |
| 1 |
|
muinv.1 |
|
| 2 |
|
muinv.2 |
|
| 3 |
1
|
feqmptd |
|
| 4 |
2
|
ad2antrr |
|
| 5 |
4
|
fveq1d |
|
| 6 |
|
breq1 |
|
| 7 |
6
|
elrab |
|
| 8 |
7
|
simprbi |
|
| 9 |
8
|
adantl |
|
| 10 |
|
elrabi |
|
| 11 |
10
|
adantl |
|
| 12 |
11
|
nnzd |
|
| 13 |
11
|
nnne0d |
|
| 14 |
|
nnz |
|
| 15 |
14
|
ad2antlr |
|
| 16 |
|
dvdsval2 |
|
| 17 |
12 13 15 16
|
syl3anc |
|
| 18 |
9 17
|
mpbid |
|
| 19 |
|
nnre |
|
| 20 |
|
nngt0 |
|
| 21 |
19 20
|
jca |
|
| 22 |
21
|
ad2antlr |
|
| 23 |
|
nnre |
|
| 24 |
|
nngt0 |
|
| 25 |
23 24
|
jca |
|
| 26 |
11 25
|
syl |
|
| 27 |
|
divgt0 |
|
| 28 |
22 26 27
|
syl2anc |
|
| 29 |
|
elnnz |
|
| 30 |
18 28 29
|
sylanbrc |
|
| 31 |
|
breq2 |
|
| 32 |
31
|
rabbidv |
|
| 33 |
32
|
sumeq1d |
|
| 34 |
|
eqid |
|
| 35 |
|
sumex |
|
| 36 |
33 34 35
|
fvmpt |
|
| 37 |
30 36
|
syl |
|
| 38 |
5 37
|
eqtrd |
|
| 39 |
38
|
oveq2d |
|
| 40 |
|
fzfid |
|
| 41 |
|
dvdsssfz1 |
|
| 42 |
30 41
|
syl |
|
| 43 |
40 42
|
ssfid |
|
| 44 |
|
mucl |
|
| 45 |
11 44
|
syl |
|
| 46 |
45
|
zcnd |
|
| 47 |
1
|
ad2antrr |
|
| 48 |
|
elrabi |
|
| 49 |
|
ffvelcdm |
|
| 50 |
47 48 49
|
syl2an |
|
| 51 |
43 46 50
|
fsummulc2 |
|
| 52 |
39 51
|
eqtrd |
|
| 53 |
52
|
sumeq2dv |
|
| 54 |
|
simpr |
|
| 55 |
46
|
adantrr |
|
| 56 |
50
|
anasss |
|
| 57 |
55 56
|
mulcld |
|
| 58 |
54 57
|
fsumdvdsdiag |
|
| 59 |
|
ssrab2 |
|
| 60 |
|
dvdsdivcl |
|
| 61 |
60
|
adantll |
|
| 62 |
59 61
|
sselid |
|
| 63 |
|
musum |
|
| 64 |
62 63
|
syl |
|
| 65 |
64
|
oveq1d |
|
| 66 |
|
fzfid |
|
| 67 |
|
dvdsssfz1 |
|
| 68 |
62 67
|
syl |
|
| 69 |
66 68
|
ssfid |
|
| 70 |
1
|
adantr |
|
| 71 |
|
elrabi |
|
| 72 |
70 71 49
|
syl2an |
|
| 73 |
|
ssrab2 |
|
| 74 |
|
simpr |
|
| 75 |
73 74
|
sselid |
|
| 76 |
75 44
|
syl |
|
| 77 |
76
|
zcnd |
|
| 78 |
69 72 77
|
fsummulc1 |
|
| 79 |
|
ovif |
|
| 80 |
|
nncn |
|
| 81 |
80
|
ad2antlr |
|
| 82 |
71
|
adantl |
|
| 83 |
82
|
nncnd |
|
| 84 |
|
1cnd |
|
| 85 |
82
|
nnne0d |
|
| 86 |
81 83 84 85
|
divmuld |
|
| 87 |
83
|
mulridd |
|
| 88 |
87
|
eqeq1d |
|
| 89 |
86 88
|
bitrd |
|
| 90 |
72
|
mullidd |
|
| 91 |
72
|
mul02d |
|
| 92 |
89 90 91
|
ifbieq12d |
|
| 93 |
79 92
|
eqtrid |
|
| 94 |
65 78 93
|
3eqtr3d |
|
| 95 |
94
|
sumeq2dv |
|
| 96 |
|
breq1 |
|
| 97 |
54
|
nnzd |
|
| 98 |
|
iddvds |
|
| 99 |
97 98
|
syl |
|
| 100 |
96 54 99
|
elrabd |
|
| 101 |
100
|
snssd |
|
| 102 |
101
|
sselda |
|
| 103 |
102 72
|
syldan |
|
| 104 |
|
0cn |
|
| 105 |
|
ifcl |
|
| 106 |
103 104 105
|
sylancl |
|
| 107 |
|
eldifsni |
|
| 108 |
107
|
adantl |
|
| 109 |
108
|
neneqd |
|
| 110 |
109
|
iffalsed |
|
| 111 |
|
fzfid |
|
| 112 |
|
dvdsssfz1 |
|
| 113 |
112
|
adantl |
|
| 114 |
111 113
|
ssfid |
|
| 115 |
101 106 110 114
|
fsumss |
|
| 116 |
1
|
ffvelcdmda |
|
| 117 |
|
iftrue |
|
| 118 |
|
fveq2 |
|
| 119 |
117 118
|
eqtrd |
|
| 120 |
119
|
sumsn |
|
| 121 |
54 116 120
|
syl2anc |
|
| 122 |
95 115 121
|
3eqtr2d |
|
| 123 |
53 58 122
|
3eqtrd |
|
| 124 |
123
|
mpteq2dva |
|
| 125 |
3 124
|
eqtr4d |
|