| Step |
Hyp |
Ref |
Expression |
| 1 |
|
muinv.1 |
|- ( ph -> F : NN --> CC ) |
| 2 |
|
muinv.2 |
|- ( ph -> G = ( n e. NN |-> sum_ k e. { x e. NN | x || n } ( F ` k ) ) ) |
| 3 |
1
|
feqmptd |
|- ( ph -> F = ( m e. NN |-> ( F ` m ) ) ) |
| 4 |
2
|
ad2antrr |
|- ( ( ( ph /\ m e. NN ) /\ j e. { x e. NN | x || m } ) -> G = ( n e. NN |-> sum_ k e. { x e. NN | x || n } ( F ` k ) ) ) |
| 5 |
4
|
fveq1d |
|- ( ( ( ph /\ m e. NN ) /\ j e. { x e. NN | x || m } ) -> ( G ` ( m / j ) ) = ( ( n e. NN |-> sum_ k e. { x e. NN | x || n } ( F ` k ) ) ` ( m / j ) ) ) |
| 6 |
|
breq1 |
|- ( x = j -> ( x || m <-> j || m ) ) |
| 7 |
6
|
elrab |
|- ( j e. { x e. NN | x || m } <-> ( j e. NN /\ j || m ) ) |
| 8 |
7
|
simprbi |
|- ( j e. { x e. NN | x || m } -> j || m ) |
| 9 |
8
|
adantl |
|- ( ( ( ph /\ m e. NN ) /\ j e. { x e. NN | x || m } ) -> j || m ) |
| 10 |
|
elrabi |
|- ( j e. { x e. NN | x || m } -> j e. NN ) |
| 11 |
10
|
adantl |
|- ( ( ( ph /\ m e. NN ) /\ j e. { x e. NN | x || m } ) -> j e. NN ) |
| 12 |
11
|
nnzd |
|- ( ( ( ph /\ m e. NN ) /\ j e. { x e. NN | x || m } ) -> j e. ZZ ) |
| 13 |
11
|
nnne0d |
|- ( ( ( ph /\ m e. NN ) /\ j e. { x e. NN | x || m } ) -> j =/= 0 ) |
| 14 |
|
nnz |
|- ( m e. NN -> m e. ZZ ) |
| 15 |
14
|
ad2antlr |
|- ( ( ( ph /\ m e. NN ) /\ j e. { x e. NN | x || m } ) -> m e. ZZ ) |
| 16 |
|
dvdsval2 |
|- ( ( j e. ZZ /\ j =/= 0 /\ m e. ZZ ) -> ( j || m <-> ( m / j ) e. ZZ ) ) |
| 17 |
12 13 15 16
|
syl3anc |
|- ( ( ( ph /\ m e. NN ) /\ j e. { x e. NN | x || m } ) -> ( j || m <-> ( m / j ) e. ZZ ) ) |
| 18 |
9 17
|
mpbid |
|- ( ( ( ph /\ m e. NN ) /\ j e. { x e. NN | x || m } ) -> ( m / j ) e. ZZ ) |
| 19 |
|
nnre |
|- ( m e. NN -> m e. RR ) |
| 20 |
|
nngt0 |
|- ( m e. NN -> 0 < m ) |
| 21 |
19 20
|
jca |
|- ( m e. NN -> ( m e. RR /\ 0 < m ) ) |
| 22 |
21
|
ad2antlr |
|- ( ( ( ph /\ m e. NN ) /\ j e. { x e. NN | x || m } ) -> ( m e. RR /\ 0 < m ) ) |
| 23 |
|
nnre |
|- ( j e. NN -> j e. RR ) |
| 24 |
|
nngt0 |
|- ( j e. NN -> 0 < j ) |
| 25 |
23 24
|
jca |
|- ( j e. NN -> ( j e. RR /\ 0 < j ) ) |
| 26 |
11 25
|
syl |
|- ( ( ( ph /\ m e. NN ) /\ j e. { x e. NN | x || m } ) -> ( j e. RR /\ 0 < j ) ) |
| 27 |
|
divgt0 |
|- ( ( ( m e. RR /\ 0 < m ) /\ ( j e. RR /\ 0 < j ) ) -> 0 < ( m / j ) ) |
| 28 |
22 26 27
|
syl2anc |
|- ( ( ( ph /\ m e. NN ) /\ j e. { x e. NN | x || m } ) -> 0 < ( m / j ) ) |
| 29 |
|
elnnz |
|- ( ( m / j ) e. NN <-> ( ( m / j ) e. ZZ /\ 0 < ( m / j ) ) ) |
| 30 |
18 28 29
|
sylanbrc |
|- ( ( ( ph /\ m e. NN ) /\ j e. { x e. NN | x || m } ) -> ( m / j ) e. NN ) |
| 31 |
|
breq2 |
|- ( n = ( m / j ) -> ( x || n <-> x || ( m / j ) ) ) |
| 32 |
31
|
rabbidv |
|- ( n = ( m / j ) -> { x e. NN | x || n } = { x e. NN | x || ( m / j ) } ) |
| 33 |
32
|
sumeq1d |
|- ( n = ( m / j ) -> sum_ k e. { x e. NN | x || n } ( F ` k ) = sum_ k e. { x e. NN | x || ( m / j ) } ( F ` k ) ) |
| 34 |
|
eqid |
|- ( n e. NN |-> sum_ k e. { x e. NN | x || n } ( F ` k ) ) = ( n e. NN |-> sum_ k e. { x e. NN | x || n } ( F ` k ) ) |
| 35 |
|
sumex |
|- sum_ k e. { x e. NN | x || ( m / j ) } ( F ` k ) e. _V |
| 36 |
33 34 35
|
fvmpt |
|- ( ( m / j ) e. NN -> ( ( n e. NN |-> sum_ k e. { x e. NN | x || n } ( F ` k ) ) ` ( m / j ) ) = sum_ k e. { x e. NN | x || ( m / j ) } ( F ` k ) ) |
| 37 |
30 36
|
syl |
|- ( ( ( ph /\ m e. NN ) /\ j e. { x e. NN | x || m } ) -> ( ( n e. NN |-> sum_ k e. { x e. NN | x || n } ( F ` k ) ) ` ( m / j ) ) = sum_ k e. { x e. NN | x || ( m / j ) } ( F ` k ) ) |
| 38 |
5 37
|
eqtrd |
|- ( ( ( ph /\ m e. NN ) /\ j e. { x e. NN | x || m } ) -> ( G ` ( m / j ) ) = sum_ k e. { x e. NN | x || ( m / j ) } ( F ` k ) ) |
| 39 |
38
|
oveq2d |
|- ( ( ( ph /\ m e. NN ) /\ j e. { x e. NN | x || m } ) -> ( ( mmu ` j ) x. ( G ` ( m / j ) ) ) = ( ( mmu ` j ) x. sum_ k e. { x e. NN | x || ( m / j ) } ( F ` k ) ) ) |
| 40 |
|
fzfid |
|- ( ( ( ph /\ m e. NN ) /\ j e. { x e. NN | x || m } ) -> ( 1 ... ( m / j ) ) e. Fin ) |
| 41 |
|
dvdsssfz1 |
|- ( ( m / j ) e. NN -> { x e. NN | x || ( m / j ) } C_ ( 1 ... ( m / j ) ) ) |
| 42 |
30 41
|
syl |
|- ( ( ( ph /\ m e. NN ) /\ j e. { x e. NN | x || m } ) -> { x e. NN | x || ( m / j ) } C_ ( 1 ... ( m / j ) ) ) |
| 43 |
40 42
|
ssfid |
|- ( ( ( ph /\ m e. NN ) /\ j e. { x e. NN | x || m } ) -> { x e. NN | x || ( m / j ) } e. Fin ) |
| 44 |
|
mucl |
|- ( j e. NN -> ( mmu ` j ) e. ZZ ) |
| 45 |
11 44
|
syl |
|- ( ( ( ph /\ m e. NN ) /\ j e. { x e. NN | x || m } ) -> ( mmu ` j ) e. ZZ ) |
| 46 |
45
|
zcnd |
|- ( ( ( ph /\ m e. NN ) /\ j e. { x e. NN | x || m } ) -> ( mmu ` j ) e. CC ) |
| 47 |
1
|
ad2antrr |
|- ( ( ( ph /\ m e. NN ) /\ j e. { x e. NN | x || m } ) -> F : NN --> CC ) |
| 48 |
|
elrabi |
|- ( k e. { x e. NN | x || ( m / j ) } -> k e. NN ) |
| 49 |
|
ffvelcdm |
|- ( ( F : NN --> CC /\ k e. NN ) -> ( F ` k ) e. CC ) |
| 50 |
47 48 49
|
syl2an |
|- ( ( ( ( ph /\ m e. NN ) /\ j e. { x e. NN | x || m } ) /\ k e. { x e. NN | x || ( m / j ) } ) -> ( F ` k ) e. CC ) |
| 51 |
43 46 50
|
fsummulc2 |
|- ( ( ( ph /\ m e. NN ) /\ j e. { x e. NN | x || m } ) -> ( ( mmu ` j ) x. sum_ k e. { x e. NN | x || ( m / j ) } ( F ` k ) ) = sum_ k e. { x e. NN | x || ( m / j ) } ( ( mmu ` j ) x. ( F ` k ) ) ) |
| 52 |
39 51
|
eqtrd |
|- ( ( ( ph /\ m e. NN ) /\ j e. { x e. NN | x || m } ) -> ( ( mmu ` j ) x. ( G ` ( m / j ) ) ) = sum_ k e. { x e. NN | x || ( m / j ) } ( ( mmu ` j ) x. ( F ` k ) ) ) |
| 53 |
52
|
sumeq2dv |
|- ( ( ph /\ m e. NN ) -> sum_ j e. { x e. NN | x || m } ( ( mmu ` j ) x. ( G ` ( m / j ) ) ) = sum_ j e. { x e. NN | x || m } sum_ k e. { x e. NN | x || ( m / j ) } ( ( mmu ` j ) x. ( F ` k ) ) ) |
| 54 |
|
simpr |
|- ( ( ph /\ m e. NN ) -> m e. NN ) |
| 55 |
46
|
adantrr |
|- ( ( ( ph /\ m e. NN ) /\ ( j e. { x e. NN | x || m } /\ k e. { x e. NN | x || ( m / j ) } ) ) -> ( mmu ` j ) e. CC ) |
| 56 |
50
|
anasss |
|- ( ( ( ph /\ m e. NN ) /\ ( j e. { x e. NN | x || m } /\ k e. { x e. NN | x || ( m / j ) } ) ) -> ( F ` k ) e. CC ) |
| 57 |
55 56
|
mulcld |
|- ( ( ( ph /\ m e. NN ) /\ ( j e. { x e. NN | x || m } /\ k e. { x e. NN | x || ( m / j ) } ) ) -> ( ( mmu ` j ) x. ( F ` k ) ) e. CC ) |
| 58 |
54 57
|
fsumdvdsdiag |
|- ( ( ph /\ m e. NN ) -> sum_ j e. { x e. NN | x || m } sum_ k e. { x e. NN | x || ( m / j ) } ( ( mmu ` j ) x. ( F ` k ) ) = sum_ k e. { x e. NN | x || m } sum_ j e. { x e. NN | x || ( m / k ) } ( ( mmu ` j ) x. ( F ` k ) ) ) |
| 59 |
|
ssrab2 |
|- { x e. NN | x || m } C_ NN |
| 60 |
|
dvdsdivcl |
|- ( ( m e. NN /\ k e. { x e. NN | x || m } ) -> ( m / k ) e. { x e. NN | x || m } ) |
| 61 |
60
|
adantll |
|- ( ( ( ph /\ m e. NN ) /\ k e. { x e. NN | x || m } ) -> ( m / k ) e. { x e. NN | x || m } ) |
| 62 |
59 61
|
sselid |
|- ( ( ( ph /\ m e. NN ) /\ k e. { x e. NN | x || m } ) -> ( m / k ) e. NN ) |
| 63 |
|
musum |
|- ( ( m / k ) e. NN -> sum_ j e. { x e. NN | x || ( m / k ) } ( mmu ` j ) = if ( ( m / k ) = 1 , 1 , 0 ) ) |
| 64 |
62 63
|
syl |
|- ( ( ( ph /\ m e. NN ) /\ k e. { x e. NN | x || m } ) -> sum_ j e. { x e. NN | x || ( m / k ) } ( mmu ` j ) = if ( ( m / k ) = 1 , 1 , 0 ) ) |
| 65 |
64
|
oveq1d |
|- ( ( ( ph /\ m e. NN ) /\ k e. { x e. NN | x || m } ) -> ( sum_ j e. { x e. NN | x || ( m / k ) } ( mmu ` j ) x. ( F ` k ) ) = ( if ( ( m / k ) = 1 , 1 , 0 ) x. ( F ` k ) ) ) |
| 66 |
|
fzfid |
|- ( ( ( ph /\ m e. NN ) /\ k e. { x e. NN | x || m } ) -> ( 1 ... ( m / k ) ) e. Fin ) |
| 67 |
|
dvdsssfz1 |
|- ( ( m / k ) e. NN -> { x e. NN | x || ( m / k ) } C_ ( 1 ... ( m / k ) ) ) |
| 68 |
62 67
|
syl |
|- ( ( ( ph /\ m e. NN ) /\ k e. { x e. NN | x || m } ) -> { x e. NN | x || ( m / k ) } C_ ( 1 ... ( m / k ) ) ) |
| 69 |
66 68
|
ssfid |
|- ( ( ( ph /\ m e. NN ) /\ k e. { x e. NN | x || m } ) -> { x e. NN | x || ( m / k ) } e. Fin ) |
| 70 |
1
|
adantr |
|- ( ( ph /\ m e. NN ) -> F : NN --> CC ) |
| 71 |
|
elrabi |
|- ( k e. { x e. NN | x || m } -> k e. NN ) |
| 72 |
70 71 49
|
syl2an |
|- ( ( ( ph /\ m e. NN ) /\ k e. { x e. NN | x || m } ) -> ( F ` k ) e. CC ) |
| 73 |
|
ssrab2 |
|- { x e. NN | x || ( m / k ) } C_ NN |
| 74 |
|
simpr |
|- ( ( ( ( ph /\ m e. NN ) /\ k e. { x e. NN | x || m } ) /\ j e. { x e. NN | x || ( m / k ) } ) -> j e. { x e. NN | x || ( m / k ) } ) |
| 75 |
73 74
|
sselid |
|- ( ( ( ( ph /\ m e. NN ) /\ k e. { x e. NN | x || m } ) /\ j e. { x e. NN | x || ( m / k ) } ) -> j e. NN ) |
| 76 |
75 44
|
syl |
|- ( ( ( ( ph /\ m e. NN ) /\ k e. { x e. NN | x || m } ) /\ j e. { x e. NN | x || ( m / k ) } ) -> ( mmu ` j ) e. ZZ ) |
| 77 |
76
|
zcnd |
|- ( ( ( ( ph /\ m e. NN ) /\ k e. { x e. NN | x || m } ) /\ j e. { x e. NN | x || ( m / k ) } ) -> ( mmu ` j ) e. CC ) |
| 78 |
69 72 77
|
fsummulc1 |
|- ( ( ( ph /\ m e. NN ) /\ k e. { x e. NN | x || m } ) -> ( sum_ j e. { x e. NN | x || ( m / k ) } ( mmu ` j ) x. ( F ` k ) ) = sum_ j e. { x e. NN | x || ( m / k ) } ( ( mmu ` j ) x. ( F ` k ) ) ) |
| 79 |
|
ovif |
|- ( if ( ( m / k ) = 1 , 1 , 0 ) x. ( F ` k ) ) = if ( ( m / k ) = 1 , ( 1 x. ( F ` k ) ) , ( 0 x. ( F ` k ) ) ) |
| 80 |
|
nncn |
|- ( m e. NN -> m e. CC ) |
| 81 |
80
|
ad2antlr |
|- ( ( ( ph /\ m e. NN ) /\ k e. { x e. NN | x || m } ) -> m e. CC ) |
| 82 |
71
|
adantl |
|- ( ( ( ph /\ m e. NN ) /\ k e. { x e. NN | x || m } ) -> k e. NN ) |
| 83 |
82
|
nncnd |
|- ( ( ( ph /\ m e. NN ) /\ k e. { x e. NN | x || m } ) -> k e. CC ) |
| 84 |
|
1cnd |
|- ( ( ( ph /\ m e. NN ) /\ k e. { x e. NN | x || m } ) -> 1 e. CC ) |
| 85 |
82
|
nnne0d |
|- ( ( ( ph /\ m e. NN ) /\ k e. { x e. NN | x || m } ) -> k =/= 0 ) |
| 86 |
81 83 84 85
|
divmuld |
|- ( ( ( ph /\ m e. NN ) /\ k e. { x e. NN | x || m } ) -> ( ( m / k ) = 1 <-> ( k x. 1 ) = m ) ) |
| 87 |
83
|
mulridd |
|- ( ( ( ph /\ m e. NN ) /\ k e. { x e. NN | x || m } ) -> ( k x. 1 ) = k ) |
| 88 |
87
|
eqeq1d |
|- ( ( ( ph /\ m e. NN ) /\ k e. { x e. NN | x || m } ) -> ( ( k x. 1 ) = m <-> k = m ) ) |
| 89 |
86 88
|
bitrd |
|- ( ( ( ph /\ m e. NN ) /\ k e. { x e. NN | x || m } ) -> ( ( m / k ) = 1 <-> k = m ) ) |
| 90 |
72
|
mullidd |
|- ( ( ( ph /\ m e. NN ) /\ k e. { x e. NN | x || m } ) -> ( 1 x. ( F ` k ) ) = ( F ` k ) ) |
| 91 |
72
|
mul02d |
|- ( ( ( ph /\ m e. NN ) /\ k e. { x e. NN | x || m } ) -> ( 0 x. ( F ` k ) ) = 0 ) |
| 92 |
89 90 91
|
ifbieq12d |
|- ( ( ( ph /\ m e. NN ) /\ k e. { x e. NN | x || m } ) -> if ( ( m / k ) = 1 , ( 1 x. ( F ` k ) ) , ( 0 x. ( F ` k ) ) ) = if ( k = m , ( F ` k ) , 0 ) ) |
| 93 |
79 92
|
eqtrid |
|- ( ( ( ph /\ m e. NN ) /\ k e. { x e. NN | x || m } ) -> ( if ( ( m / k ) = 1 , 1 , 0 ) x. ( F ` k ) ) = if ( k = m , ( F ` k ) , 0 ) ) |
| 94 |
65 78 93
|
3eqtr3d |
|- ( ( ( ph /\ m e. NN ) /\ k e. { x e. NN | x || m } ) -> sum_ j e. { x e. NN | x || ( m / k ) } ( ( mmu ` j ) x. ( F ` k ) ) = if ( k = m , ( F ` k ) , 0 ) ) |
| 95 |
94
|
sumeq2dv |
|- ( ( ph /\ m e. NN ) -> sum_ k e. { x e. NN | x || m } sum_ j e. { x e. NN | x || ( m / k ) } ( ( mmu ` j ) x. ( F ` k ) ) = sum_ k e. { x e. NN | x || m } if ( k = m , ( F ` k ) , 0 ) ) |
| 96 |
|
breq1 |
|- ( x = m -> ( x || m <-> m || m ) ) |
| 97 |
54
|
nnzd |
|- ( ( ph /\ m e. NN ) -> m e. ZZ ) |
| 98 |
|
iddvds |
|- ( m e. ZZ -> m || m ) |
| 99 |
97 98
|
syl |
|- ( ( ph /\ m e. NN ) -> m || m ) |
| 100 |
96 54 99
|
elrabd |
|- ( ( ph /\ m e. NN ) -> m e. { x e. NN | x || m } ) |
| 101 |
100
|
snssd |
|- ( ( ph /\ m e. NN ) -> { m } C_ { x e. NN | x || m } ) |
| 102 |
101
|
sselda |
|- ( ( ( ph /\ m e. NN ) /\ k e. { m } ) -> k e. { x e. NN | x || m } ) |
| 103 |
102 72
|
syldan |
|- ( ( ( ph /\ m e. NN ) /\ k e. { m } ) -> ( F ` k ) e. CC ) |
| 104 |
|
0cn |
|- 0 e. CC |
| 105 |
|
ifcl |
|- ( ( ( F ` k ) e. CC /\ 0 e. CC ) -> if ( k = m , ( F ` k ) , 0 ) e. CC ) |
| 106 |
103 104 105
|
sylancl |
|- ( ( ( ph /\ m e. NN ) /\ k e. { m } ) -> if ( k = m , ( F ` k ) , 0 ) e. CC ) |
| 107 |
|
eldifsni |
|- ( k e. ( { x e. NN | x || m } \ { m } ) -> k =/= m ) |
| 108 |
107
|
adantl |
|- ( ( ( ph /\ m e. NN ) /\ k e. ( { x e. NN | x || m } \ { m } ) ) -> k =/= m ) |
| 109 |
108
|
neneqd |
|- ( ( ( ph /\ m e. NN ) /\ k e. ( { x e. NN | x || m } \ { m } ) ) -> -. k = m ) |
| 110 |
109
|
iffalsed |
|- ( ( ( ph /\ m e. NN ) /\ k e. ( { x e. NN | x || m } \ { m } ) ) -> if ( k = m , ( F ` k ) , 0 ) = 0 ) |
| 111 |
|
fzfid |
|- ( ( ph /\ m e. NN ) -> ( 1 ... m ) e. Fin ) |
| 112 |
|
dvdsssfz1 |
|- ( m e. NN -> { x e. NN | x || m } C_ ( 1 ... m ) ) |
| 113 |
112
|
adantl |
|- ( ( ph /\ m e. NN ) -> { x e. NN | x || m } C_ ( 1 ... m ) ) |
| 114 |
111 113
|
ssfid |
|- ( ( ph /\ m e. NN ) -> { x e. NN | x || m } e. Fin ) |
| 115 |
101 106 110 114
|
fsumss |
|- ( ( ph /\ m e. NN ) -> sum_ k e. { m } if ( k = m , ( F ` k ) , 0 ) = sum_ k e. { x e. NN | x || m } if ( k = m , ( F ` k ) , 0 ) ) |
| 116 |
1
|
ffvelcdmda |
|- ( ( ph /\ m e. NN ) -> ( F ` m ) e. CC ) |
| 117 |
|
iftrue |
|- ( k = m -> if ( k = m , ( F ` k ) , 0 ) = ( F ` k ) ) |
| 118 |
|
fveq2 |
|- ( k = m -> ( F ` k ) = ( F ` m ) ) |
| 119 |
117 118
|
eqtrd |
|- ( k = m -> if ( k = m , ( F ` k ) , 0 ) = ( F ` m ) ) |
| 120 |
119
|
sumsn |
|- ( ( m e. NN /\ ( F ` m ) e. CC ) -> sum_ k e. { m } if ( k = m , ( F ` k ) , 0 ) = ( F ` m ) ) |
| 121 |
54 116 120
|
syl2anc |
|- ( ( ph /\ m e. NN ) -> sum_ k e. { m } if ( k = m , ( F ` k ) , 0 ) = ( F ` m ) ) |
| 122 |
95 115 121
|
3eqtr2d |
|- ( ( ph /\ m e. NN ) -> sum_ k e. { x e. NN | x || m } sum_ j e. { x e. NN | x || ( m / k ) } ( ( mmu ` j ) x. ( F ` k ) ) = ( F ` m ) ) |
| 123 |
53 58 122
|
3eqtrd |
|- ( ( ph /\ m e. NN ) -> sum_ j e. { x e. NN | x || m } ( ( mmu ` j ) x. ( G ` ( m / j ) ) ) = ( F ` m ) ) |
| 124 |
123
|
mpteq2dva |
|- ( ph -> ( m e. NN |-> sum_ j e. { x e. NN | x || m } ( ( mmu ` j ) x. ( G ` ( m / j ) ) ) ) = ( m e. NN |-> ( F ` m ) ) ) |
| 125 |
3 124
|
eqtr4d |
|- ( ph -> F = ( m e. NN |-> sum_ j e. { x e. NN | x || m } ( ( mmu ` j ) x. ( G ` ( m / j ) ) ) ) ) |