| Step |
Hyp |
Ref |
Expression |
| 1 |
|
muinv.1 |
⊢ ( 𝜑 → 𝐹 : ℕ ⟶ ℂ ) |
| 2 |
|
muinv.2 |
⊢ ( 𝜑 → 𝐺 = ( 𝑛 ∈ ℕ ↦ Σ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑛 } ( 𝐹 ‘ 𝑘 ) ) ) |
| 3 |
1
|
feqmptd |
⊢ ( 𝜑 → 𝐹 = ( 𝑚 ∈ ℕ ↦ ( 𝐹 ‘ 𝑚 ) ) ) |
| 4 |
2
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑗 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑚 } ) → 𝐺 = ( 𝑛 ∈ ℕ ↦ Σ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑛 } ( 𝐹 ‘ 𝑘 ) ) ) |
| 5 |
4
|
fveq1d |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑗 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑚 } ) → ( 𝐺 ‘ ( 𝑚 / 𝑗 ) ) = ( ( 𝑛 ∈ ℕ ↦ Σ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑛 } ( 𝐹 ‘ 𝑘 ) ) ‘ ( 𝑚 / 𝑗 ) ) ) |
| 6 |
|
breq1 |
⊢ ( 𝑥 = 𝑗 → ( 𝑥 ∥ 𝑚 ↔ 𝑗 ∥ 𝑚 ) ) |
| 7 |
6
|
elrab |
⊢ ( 𝑗 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑚 } ↔ ( 𝑗 ∈ ℕ ∧ 𝑗 ∥ 𝑚 ) ) |
| 8 |
7
|
simprbi |
⊢ ( 𝑗 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑚 } → 𝑗 ∥ 𝑚 ) |
| 9 |
8
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑗 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑚 } ) → 𝑗 ∥ 𝑚 ) |
| 10 |
|
elrabi |
⊢ ( 𝑗 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑚 } → 𝑗 ∈ ℕ ) |
| 11 |
10
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑗 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑚 } ) → 𝑗 ∈ ℕ ) |
| 12 |
11
|
nnzd |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑗 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑚 } ) → 𝑗 ∈ ℤ ) |
| 13 |
11
|
nnne0d |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑗 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑚 } ) → 𝑗 ≠ 0 ) |
| 14 |
|
nnz |
⊢ ( 𝑚 ∈ ℕ → 𝑚 ∈ ℤ ) |
| 15 |
14
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑗 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑚 } ) → 𝑚 ∈ ℤ ) |
| 16 |
|
dvdsval2 |
⊢ ( ( 𝑗 ∈ ℤ ∧ 𝑗 ≠ 0 ∧ 𝑚 ∈ ℤ ) → ( 𝑗 ∥ 𝑚 ↔ ( 𝑚 / 𝑗 ) ∈ ℤ ) ) |
| 17 |
12 13 15 16
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑗 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑚 } ) → ( 𝑗 ∥ 𝑚 ↔ ( 𝑚 / 𝑗 ) ∈ ℤ ) ) |
| 18 |
9 17
|
mpbid |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑗 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑚 } ) → ( 𝑚 / 𝑗 ) ∈ ℤ ) |
| 19 |
|
nnre |
⊢ ( 𝑚 ∈ ℕ → 𝑚 ∈ ℝ ) |
| 20 |
|
nngt0 |
⊢ ( 𝑚 ∈ ℕ → 0 < 𝑚 ) |
| 21 |
19 20
|
jca |
⊢ ( 𝑚 ∈ ℕ → ( 𝑚 ∈ ℝ ∧ 0 < 𝑚 ) ) |
| 22 |
21
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑗 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑚 } ) → ( 𝑚 ∈ ℝ ∧ 0 < 𝑚 ) ) |
| 23 |
|
nnre |
⊢ ( 𝑗 ∈ ℕ → 𝑗 ∈ ℝ ) |
| 24 |
|
nngt0 |
⊢ ( 𝑗 ∈ ℕ → 0 < 𝑗 ) |
| 25 |
23 24
|
jca |
⊢ ( 𝑗 ∈ ℕ → ( 𝑗 ∈ ℝ ∧ 0 < 𝑗 ) ) |
| 26 |
11 25
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑗 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑚 } ) → ( 𝑗 ∈ ℝ ∧ 0 < 𝑗 ) ) |
| 27 |
|
divgt0 |
⊢ ( ( ( 𝑚 ∈ ℝ ∧ 0 < 𝑚 ) ∧ ( 𝑗 ∈ ℝ ∧ 0 < 𝑗 ) ) → 0 < ( 𝑚 / 𝑗 ) ) |
| 28 |
22 26 27
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑗 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑚 } ) → 0 < ( 𝑚 / 𝑗 ) ) |
| 29 |
|
elnnz |
⊢ ( ( 𝑚 / 𝑗 ) ∈ ℕ ↔ ( ( 𝑚 / 𝑗 ) ∈ ℤ ∧ 0 < ( 𝑚 / 𝑗 ) ) ) |
| 30 |
18 28 29
|
sylanbrc |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑗 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑚 } ) → ( 𝑚 / 𝑗 ) ∈ ℕ ) |
| 31 |
|
breq2 |
⊢ ( 𝑛 = ( 𝑚 / 𝑗 ) → ( 𝑥 ∥ 𝑛 ↔ 𝑥 ∥ ( 𝑚 / 𝑗 ) ) ) |
| 32 |
31
|
rabbidv |
⊢ ( 𝑛 = ( 𝑚 / 𝑗 ) → { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑛 } = { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑚 / 𝑗 ) } ) |
| 33 |
32
|
sumeq1d |
⊢ ( 𝑛 = ( 𝑚 / 𝑗 ) → Σ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑛 } ( 𝐹 ‘ 𝑘 ) = Σ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑚 / 𝑗 ) } ( 𝐹 ‘ 𝑘 ) ) |
| 34 |
|
eqid |
⊢ ( 𝑛 ∈ ℕ ↦ Σ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑛 } ( 𝐹 ‘ 𝑘 ) ) = ( 𝑛 ∈ ℕ ↦ Σ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑛 } ( 𝐹 ‘ 𝑘 ) ) |
| 35 |
|
sumex |
⊢ Σ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑚 / 𝑗 ) } ( 𝐹 ‘ 𝑘 ) ∈ V |
| 36 |
33 34 35
|
fvmpt |
⊢ ( ( 𝑚 / 𝑗 ) ∈ ℕ → ( ( 𝑛 ∈ ℕ ↦ Σ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑛 } ( 𝐹 ‘ 𝑘 ) ) ‘ ( 𝑚 / 𝑗 ) ) = Σ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑚 / 𝑗 ) } ( 𝐹 ‘ 𝑘 ) ) |
| 37 |
30 36
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑗 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑚 } ) → ( ( 𝑛 ∈ ℕ ↦ Σ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑛 } ( 𝐹 ‘ 𝑘 ) ) ‘ ( 𝑚 / 𝑗 ) ) = Σ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑚 / 𝑗 ) } ( 𝐹 ‘ 𝑘 ) ) |
| 38 |
5 37
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑗 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑚 } ) → ( 𝐺 ‘ ( 𝑚 / 𝑗 ) ) = Σ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑚 / 𝑗 ) } ( 𝐹 ‘ 𝑘 ) ) |
| 39 |
38
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑗 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑚 } ) → ( ( μ ‘ 𝑗 ) · ( 𝐺 ‘ ( 𝑚 / 𝑗 ) ) ) = ( ( μ ‘ 𝑗 ) · Σ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑚 / 𝑗 ) } ( 𝐹 ‘ 𝑘 ) ) ) |
| 40 |
|
fzfid |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑗 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑚 } ) → ( 1 ... ( 𝑚 / 𝑗 ) ) ∈ Fin ) |
| 41 |
|
dvdsssfz1 |
⊢ ( ( 𝑚 / 𝑗 ) ∈ ℕ → { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑚 / 𝑗 ) } ⊆ ( 1 ... ( 𝑚 / 𝑗 ) ) ) |
| 42 |
30 41
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑗 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑚 } ) → { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑚 / 𝑗 ) } ⊆ ( 1 ... ( 𝑚 / 𝑗 ) ) ) |
| 43 |
40 42
|
ssfid |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑗 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑚 } ) → { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑚 / 𝑗 ) } ∈ Fin ) |
| 44 |
|
mucl |
⊢ ( 𝑗 ∈ ℕ → ( μ ‘ 𝑗 ) ∈ ℤ ) |
| 45 |
11 44
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑗 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑚 } ) → ( μ ‘ 𝑗 ) ∈ ℤ ) |
| 46 |
45
|
zcnd |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑗 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑚 } ) → ( μ ‘ 𝑗 ) ∈ ℂ ) |
| 47 |
1
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑗 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑚 } ) → 𝐹 : ℕ ⟶ ℂ ) |
| 48 |
|
elrabi |
⊢ ( 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑚 / 𝑗 ) } → 𝑘 ∈ ℕ ) |
| 49 |
|
ffvelcdm |
⊢ ( ( 𝐹 : ℕ ⟶ ℂ ∧ 𝑘 ∈ ℕ ) → ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) |
| 50 |
47 48 49
|
syl2an |
⊢ ( ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑗 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑚 } ) ∧ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑚 / 𝑗 ) } ) → ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) |
| 51 |
43 46 50
|
fsummulc2 |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑗 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑚 } ) → ( ( μ ‘ 𝑗 ) · Σ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑚 / 𝑗 ) } ( 𝐹 ‘ 𝑘 ) ) = Σ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑚 / 𝑗 ) } ( ( μ ‘ 𝑗 ) · ( 𝐹 ‘ 𝑘 ) ) ) |
| 52 |
39 51
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑗 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑚 } ) → ( ( μ ‘ 𝑗 ) · ( 𝐺 ‘ ( 𝑚 / 𝑗 ) ) ) = Σ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑚 / 𝑗 ) } ( ( μ ‘ 𝑗 ) · ( 𝐹 ‘ 𝑘 ) ) ) |
| 53 |
52
|
sumeq2dv |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → Σ 𝑗 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑚 } ( ( μ ‘ 𝑗 ) · ( 𝐺 ‘ ( 𝑚 / 𝑗 ) ) ) = Σ 𝑗 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑚 } Σ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑚 / 𝑗 ) } ( ( μ ‘ 𝑗 ) · ( 𝐹 ‘ 𝑘 ) ) ) |
| 54 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → 𝑚 ∈ ℕ ) |
| 55 |
46
|
adantrr |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ ( 𝑗 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑚 } ∧ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑚 / 𝑗 ) } ) ) → ( μ ‘ 𝑗 ) ∈ ℂ ) |
| 56 |
50
|
anasss |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ ( 𝑗 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑚 } ∧ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑚 / 𝑗 ) } ) ) → ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) |
| 57 |
55 56
|
mulcld |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ ( 𝑗 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑚 } ∧ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑚 / 𝑗 ) } ) ) → ( ( μ ‘ 𝑗 ) · ( 𝐹 ‘ 𝑘 ) ) ∈ ℂ ) |
| 58 |
54 57
|
fsumdvdsdiag |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → Σ 𝑗 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑚 } Σ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑚 / 𝑗 ) } ( ( μ ‘ 𝑗 ) · ( 𝐹 ‘ 𝑘 ) ) = Σ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑚 } Σ 𝑗 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑚 / 𝑘 ) } ( ( μ ‘ 𝑗 ) · ( 𝐹 ‘ 𝑘 ) ) ) |
| 59 |
|
ssrab2 |
⊢ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑚 } ⊆ ℕ |
| 60 |
|
dvdsdivcl |
⊢ ( ( 𝑚 ∈ ℕ ∧ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑚 } ) → ( 𝑚 / 𝑘 ) ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑚 } ) |
| 61 |
60
|
adantll |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑚 } ) → ( 𝑚 / 𝑘 ) ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑚 } ) |
| 62 |
59 61
|
sselid |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑚 } ) → ( 𝑚 / 𝑘 ) ∈ ℕ ) |
| 63 |
|
musum |
⊢ ( ( 𝑚 / 𝑘 ) ∈ ℕ → Σ 𝑗 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑚 / 𝑘 ) } ( μ ‘ 𝑗 ) = if ( ( 𝑚 / 𝑘 ) = 1 , 1 , 0 ) ) |
| 64 |
62 63
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑚 } ) → Σ 𝑗 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑚 / 𝑘 ) } ( μ ‘ 𝑗 ) = if ( ( 𝑚 / 𝑘 ) = 1 , 1 , 0 ) ) |
| 65 |
64
|
oveq1d |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑚 } ) → ( Σ 𝑗 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑚 / 𝑘 ) } ( μ ‘ 𝑗 ) · ( 𝐹 ‘ 𝑘 ) ) = ( if ( ( 𝑚 / 𝑘 ) = 1 , 1 , 0 ) · ( 𝐹 ‘ 𝑘 ) ) ) |
| 66 |
|
fzfid |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑚 } ) → ( 1 ... ( 𝑚 / 𝑘 ) ) ∈ Fin ) |
| 67 |
|
dvdsssfz1 |
⊢ ( ( 𝑚 / 𝑘 ) ∈ ℕ → { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑚 / 𝑘 ) } ⊆ ( 1 ... ( 𝑚 / 𝑘 ) ) ) |
| 68 |
62 67
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑚 } ) → { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑚 / 𝑘 ) } ⊆ ( 1 ... ( 𝑚 / 𝑘 ) ) ) |
| 69 |
66 68
|
ssfid |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑚 } ) → { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑚 / 𝑘 ) } ∈ Fin ) |
| 70 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → 𝐹 : ℕ ⟶ ℂ ) |
| 71 |
|
elrabi |
⊢ ( 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑚 } → 𝑘 ∈ ℕ ) |
| 72 |
70 71 49
|
syl2an |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑚 } ) → ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) |
| 73 |
|
ssrab2 |
⊢ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑚 / 𝑘 ) } ⊆ ℕ |
| 74 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑚 } ) ∧ 𝑗 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑚 / 𝑘 ) } ) → 𝑗 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑚 / 𝑘 ) } ) |
| 75 |
73 74
|
sselid |
⊢ ( ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑚 } ) ∧ 𝑗 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑚 / 𝑘 ) } ) → 𝑗 ∈ ℕ ) |
| 76 |
75 44
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑚 } ) ∧ 𝑗 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑚 / 𝑘 ) } ) → ( μ ‘ 𝑗 ) ∈ ℤ ) |
| 77 |
76
|
zcnd |
⊢ ( ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑚 } ) ∧ 𝑗 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑚 / 𝑘 ) } ) → ( μ ‘ 𝑗 ) ∈ ℂ ) |
| 78 |
69 72 77
|
fsummulc1 |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑚 } ) → ( Σ 𝑗 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑚 / 𝑘 ) } ( μ ‘ 𝑗 ) · ( 𝐹 ‘ 𝑘 ) ) = Σ 𝑗 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑚 / 𝑘 ) } ( ( μ ‘ 𝑗 ) · ( 𝐹 ‘ 𝑘 ) ) ) |
| 79 |
|
ovif |
⊢ ( if ( ( 𝑚 / 𝑘 ) = 1 , 1 , 0 ) · ( 𝐹 ‘ 𝑘 ) ) = if ( ( 𝑚 / 𝑘 ) = 1 , ( 1 · ( 𝐹 ‘ 𝑘 ) ) , ( 0 · ( 𝐹 ‘ 𝑘 ) ) ) |
| 80 |
|
nncn |
⊢ ( 𝑚 ∈ ℕ → 𝑚 ∈ ℂ ) |
| 81 |
80
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑚 } ) → 𝑚 ∈ ℂ ) |
| 82 |
71
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑚 } ) → 𝑘 ∈ ℕ ) |
| 83 |
82
|
nncnd |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑚 } ) → 𝑘 ∈ ℂ ) |
| 84 |
|
1cnd |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑚 } ) → 1 ∈ ℂ ) |
| 85 |
82
|
nnne0d |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑚 } ) → 𝑘 ≠ 0 ) |
| 86 |
81 83 84 85
|
divmuld |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑚 } ) → ( ( 𝑚 / 𝑘 ) = 1 ↔ ( 𝑘 · 1 ) = 𝑚 ) ) |
| 87 |
83
|
mulridd |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑚 } ) → ( 𝑘 · 1 ) = 𝑘 ) |
| 88 |
87
|
eqeq1d |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑚 } ) → ( ( 𝑘 · 1 ) = 𝑚 ↔ 𝑘 = 𝑚 ) ) |
| 89 |
86 88
|
bitrd |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑚 } ) → ( ( 𝑚 / 𝑘 ) = 1 ↔ 𝑘 = 𝑚 ) ) |
| 90 |
72
|
mullidd |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑚 } ) → ( 1 · ( 𝐹 ‘ 𝑘 ) ) = ( 𝐹 ‘ 𝑘 ) ) |
| 91 |
72
|
mul02d |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑚 } ) → ( 0 · ( 𝐹 ‘ 𝑘 ) ) = 0 ) |
| 92 |
89 90 91
|
ifbieq12d |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑚 } ) → if ( ( 𝑚 / 𝑘 ) = 1 , ( 1 · ( 𝐹 ‘ 𝑘 ) ) , ( 0 · ( 𝐹 ‘ 𝑘 ) ) ) = if ( 𝑘 = 𝑚 , ( 𝐹 ‘ 𝑘 ) , 0 ) ) |
| 93 |
79 92
|
eqtrid |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑚 } ) → ( if ( ( 𝑚 / 𝑘 ) = 1 , 1 , 0 ) · ( 𝐹 ‘ 𝑘 ) ) = if ( 𝑘 = 𝑚 , ( 𝐹 ‘ 𝑘 ) , 0 ) ) |
| 94 |
65 78 93
|
3eqtr3d |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑚 } ) → Σ 𝑗 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑚 / 𝑘 ) } ( ( μ ‘ 𝑗 ) · ( 𝐹 ‘ 𝑘 ) ) = if ( 𝑘 = 𝑚 , ( 𝐹 ‘ 𝑘 ) , 0 ) ) |
| 95 |
94
|
sumeq2dv |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → Σ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑚 } Σ 𝑗 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑚 / 𝑘 ) } ( ( μ ‘ 𝑗 ) · ( 𝐹 ‘ 𝑘 ) ) = Σ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑚 } if ( 𝑘 = 𝑚 , ( 𝐹 ‘ 𝑘 ) , 0 ) ) |
| 96 |
|
breq1 |
⊢ ( 𝑥 = 𝑚 → ( 𝑥 ∥ 𝑚 ↔ 𝑚 ∥ 𝑚 ) ) |
| 97 |
54
|
nnzd |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → 𝑚 ∈ ℤ ) |
| 98 |
|
iddvds |
⊢ ( 𝑚 ∈ ℤ → 𝑚 ∥ 𝑚 ) |
| 99 |
97 98
|
syl |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → 𝑚 ∥ 𝑚 ) |
| 100 |
96 54 99
|
elrabd |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → 𝑚 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑚 } ) |
| 101 |
100
|
snssd |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → { 𝑚 } ⊆ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑚 } ) |
| 102 |
101
|
sselda |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑘 ∈ { 𝑚 } ) → 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑚 } ) |
| 103 |
102 72
|
syldan |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑘 ∈ { 𝑚 } ) → ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) |
| 104 |
|
0cn |
⊢ 0 ∈ ℂ |
| 105 |
|
ifcl |
⊢ ( ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ 0 ∈ ℂ ) → if ( 𝑘 = 𝑚 , ( 𝐹 ‘ 𝑘 ) , 0 ) ∈ ℂ ) |
| 106 |
103 104 105
|
sylancl |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑘 ∈ { 𝑚 } ) → if ( 𝑘 = 𝑚 , ( 𝐹 ‘ 𝑘 ) , 0 ) ∈ ℂ ) |
| 107 |
|
eldifsni |
⊢ ( 𝑘 ∈ ( { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑚 } ∖ { 𝑚 } ) → 𝑘 ≠ 𝑚 ) |
| 108 |
107
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑘 ∈ ( { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑚 } ∖ { 𝑚 } ) ) → 𝑘 ≠ 𝑚 ) |
| 109 |
108
|
neneqd |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑘 ∈ ( { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑚 } ∖ { 𝑚 } ) ) → ¬ 𝑘 = 𝑚 ) |
| 110 |
109
|
iffalsed |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑘 ∈ ( { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑚 } ∖ { 𝑚 } ) ) → if ( 𝑘 = 𝑚 , ( 𝐹 ‘ 𝑘 ) , 0 ) = 0 ) |
| 111 |
|
fzfid |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( 1 ... 𝑚 ) ∈ Fin ) |
| 112 |
|
dvdsssfz1 |
⊢ ( 𝑚 ∈ ℕ → { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑚 } ⊆ ( 1 ... 𝑚 ) ) |
| 113 |
112
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑚 } ⊆ ( 1 ... 𝑚 ) ) |
| 114 |
111 113
|
ssfid |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑚 } ∈ Fin ) |
| 115 |
101 106 110 114
|
fsumss |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → Σ 𝑘 ∈ { 𝑚 } if ( 𝑘 = 𝑚 , ( 𝐹 ‘ 𝑘 ) , 0 ) = Σ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑚 } if ( 𝑘 = 𝑚 , ( 𝐹 ‘ 𝑘 ) , 0 ) ) |
| 116 |
1
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( 𝐹 ‘ 𝑚 ) ∈ ℂ ) |
| 117 |
|
iftrue |
⊢ ( 𝑘 = 𝑚 → if ( 𝑘 = 𝑚 , ( 𝐹 ‘ 𝑘 ) , 0 ) = ( 𝐹 ‘ 𝑘 ) ) |
| 118 |
|
fveq2 |
⊢ ( 𝑘 = 𝑚 → ( 𝐹 ‘ 𝑘 ) = ( 𝐹 ‘ 𝑚 ) ) |
| 119 |
117 118
|
eqtrd |
⊢ ( 𝑘 = 𝑚 → if ( 𝑘 = 𝑚 , ( 𝐹 ‘ 𝑘 ) , 0 ) = ( 𝐹 ‘ 𝑚 ) ) |
| 120 |
119
|
sumsn |
⊢ ( ( 𝑚 ∈ ℕ ∧ ( 𝐹 ‘ 𝑚 ) ∈ ℂ ) → Σ 𝑘 ∈ { 𝑚 } if ( 𝑘 = 𝑚 , ( 𝐹 ‘ 𝑘 ) , 0 ) = ( 𝐹 ‘ 𝑚 ) ) |
| 121 |
54 116 120
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → Σ 𝑘 ∈ { 𝑚 } if ( 𝑘 = 𝑚 , ( 𝐹 ‘ 𝑘 ) , 0 ) = ( 𝐹 ‘ 𝑚 ) ) |
| 122 |
95 115 121
|
3eqtr2d |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → Σ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑚 } Σ 𝑗 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑚 / 𝑘 ) } ( ( μ ‘ 𝑗 ) · ( 𝐹 ‘ 𝑘 ) ) = ( 𝐹 ‘ 𝑚 ) ) |
| 123 |
53 58 122
|
3eqtrd |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → Σ 𝑗 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑚 } ( ( μ ‘ 𝑗 ) · ( 𝐺 ‘ ( 𝑚 / 𝑗 ) ) ) = ( 𝐹 ‘ 𝑚 ) ) |
| 124 |
123
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑚 ∈ ℕ ↦ Σ 𝑗 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑚 } ( ( μ ‘ 𝑗 ) · ( 𝐺 ‘ ( 𝑚 / 𝑗 ) ) ) ) = ( 𝑚 ∈ ℕ ↦ ( 𝐹 ‘ 𝑚 ) ) ) |
| 125 |
3 124
|
eqtr4d |
⊢ ( 𝜑 → 𝐹 = ( 𝑚 ∈ ℕ ↦ Σ 𝑗 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑚 } ( ( μ ‘ 𝑗 ) · ( 𝐺 ‘ ( 𝑚 / 𝑗 ) ) ) ) ) |