Step |
Hyp |
Ref |
Expression |
1 |
|
muinv.1 |
β’ ( π β πΉ : β βΆ β ) |
2 |
|
muinv.2 |
β’ ( π β πΊ = ( π β β β¦ Ξ£ π β { π₯ β β β£ π₯ β₯ π } ( πΉ β π ) ) ) |
3 |
1
|
feqmptd |
β’ ( π β πΉ = ( π β β β¦ ( πΉ β π ) ) ) |
4 |
2
|
ad2antrr |
β’ ( ( ( π β§ π β β ) β§ π β { π₯ β β β£ π₯ β₯ π } ) β πΊ = ( π β β β¦ Ξ£ π β { π₯ β β β£ π₯ β₯ π } ( πΉ β π ) ) ) |
5 |
4
|
fveq1d |
β’ ( ( ( π β§ π β β ) β§ π β { π₯ β β β£ π₯ β₯ π } ) β ( πΊ β ( π / π ) ) = ( ( π β β β¦ Ξ£ π β { π₯ β β β£ π₯ β₯ π } ( πΉ β π ) ) β ( π / π ) ) ) |
6 |
|
breq1 |
β’ ( π₯ = π β ( π₯ β₯ π β π β₯ π ) ) |
7 |
6
|
elrab |
β’ ( π β { π₯ β β β£ π₯ β₯ π } β ( π β β β§ π β₯ π ) ) |
8 |
7
|
simprbi |
β’ ( π β { π₯ β β β£ π₯ β₯ π } β π β₯ π ) |
9 |
8
|
adantl |
β’ ( ( ( π β§ π β β ) β§ π β { π₯ β β β£ π₯ β₯ π } ) β π β₯ π ) |
10 |
|
elrabi |
β’ ( π β { π₯ β β β£ π₯ β₯ π } β π β β ) |
11 |
10
|
adantl |
β’ ( ( ( π β§ π β β ) β§ π β { π₯ β β β£ π₯ β₯ π } ) β π β β ) |
12 |
11
|
nnzd |
β’ ( ( ( π β§ π β β ) β§ π β { π₯ β β β£ π₯ β₯ π } ) β π β β€ ) |
13 |
11
|
nnne0d |
β’ ( ( ( π β§ π β β ) β§ π β { π₯ β β β£ π₯ β₯ π } ) β π β 0 ) |
14 |
|
nnz |
β’ ( π β β β π β β€ ) |
15 |
14
|
ad2antlr |
β’ ( ( ( π β§ π β β ) β§ π β { π₯ β β β£ π₯ β₯ π } ) β π β β€ ) |
16 |
|
dvdsval2 |
β’ ( ( π β β€ β§ π β 0 β§ π β β€ ) β ( π β₯ π β ( π / π ) β β€ ) ) |
17 |
12 13 15 16
|
syl3anc |
β’ ( ( ( π β§ π β β ) β§ π β { π₯ β β β£ π₯ β₯ π } ) β ( π β₯ π β ( π / π ) β β€ ) ) |
18 |
9 17
|
mpbid |
β’ ( ( ( π β§ π β β ) β§ π β { π₯ β β β£ π₯ β₯ π } ) β ( π / π ) β β€ ) |
19 |
|
nnre |
β’ ( π β β β π β β ) |
20 |
|
nngt0 |
β’ ( π β β β 0 < π ) |
21 |
19 20
|
jca |
β’ ( π β β β ( π β β β§ 0 < π ) ) |
22 |
21
|
ad2antlr |
β’ ( ( ( π β§ π β β ) β§ π β { π₯ β β β£ π₯ β₯ π } ) β ( π β β β§ 0 < π ) ) |
23 |
|
nnre |
β’ ( π β β β π β β ) |
24 |
|
nngt0 |
β’ ( π β β β 0 < π ) |
25 |
23 24
|
jca |
β’ ( π β β β ( π β β β§ 0 < π ) ) |
26 |
11 25
|
syl |
β’ ( ( ( π β§ π β β ) β§ π β { π₯ β β β£ π₯ β₯ π } ) β ( π β β β§ 0 < π ) ) |
27 |
|
divgt0 |
β’ ( ( ( π β β β§ 0 < π ) β§ ( π β β β§ 0 < π ) ) β 0 < ( π / π ) ) |
28 |
22 26 27
|
syl2anc |
β’ ( ( ( π β§ π β β ) β§ π β { π₯ β β β£ π₯ β₯ π } ) β 0 < ( π / π ) ) |
29 |
|
elnnz |
β’ ( ( π / π ) β β β ( ( π / π ) β β€ β§ 0 < ( π / π ) ) ) |
30 |
18 28 29
|
sylanbrc |
β’ ( ( ( π β§ π β β ) β§ π β { π₯ β β β£ π₯ β₯ π } ) β ( π / π ) β β ) |
31 |
|
breq2 |
β’ ( π = ( π / π ) β ( π₯ β₯ π β π₯ β₯ ( π / π ) ) ) |
32 |
31
|
rabbidv |
β’ ( π = ( π / π ) β { π₯ β β β£ π₯ β₯ π } = { π₯ β β β£ π₯ β₯ ( π / π ) } ) |
33 |
32
|
sumeq1d |
β’ ( π = ( π / π ) β Ξ£ π β { π₯ β β β£ π₯ β₯ π } ( πΉ β π ) = Ξ£ π β { π₯ β β β£ π₯ β₯ ( π / π ) } ( πΉ β π ) ) |
34 |
|
eqid |
β’ ( π β β β¦ Ξ£ π β { π₯ β β β£ π₯ β₯ π } ( πΉ β π ) ) = ( π β β β¦ Ξ£ π β { π₯ β β β£ π₯ β₯ π } ( πΉ β π ) ) |
35 |
|
sumex |
β’ Ξ£ π β { π₯ β β β£ π₯ β₯ ( π / π ) } ( πΉ β π ) β V |
36 |
33 34 35
|
fvmpt |
β’ ( ( π / π ) β β β ( ( π β β β¦ Ξ£ π β { π₯ β β β£ π₯ β₯ π } ( πΉ β π ) ) β ( π / π ) ) = Ξ£ π β { π₯ β β β£ π₯ β₯ ( π / π ) } ( πΉ β π ) ) |
37 |
30 36
|
syl |
β’ ( ( ( π β§ π β β ) β§ π β { π₯ β β β£ π₯ β₯ π } ) β ( ( π β β β¦ Ξ£ π β { π₯ β β β£ π₯ β₯ π } ( πΉ β π ) ) β ( π / π ) ) = Ξ£ π β { π₯ β β β£ π₯ β₯ ( π / π ) } ( πΉ β π ) ) |
38 |
5 37
|
eqtrd |
β’ ( ( ( π β§ π β β ) β§ π β { π₯ β β β£ π₯ β₯ π } ) β ( πΊ β ( π / π ) ) = Ξ£ π β { π₯ β β β£ π₯ β₯ ( π / π ) } ( πΉ β π ) ) |
39 |
38
|
oveq2d |
β’ ( ( ( π β§ π β β ) β§ π β { π₯ β β β£ π₯ β₯ π } ) β ( ( ΞΌ β π ) Β· ( πΊ β ( π / π ) ) ) = ( ( ΞΌ β π ) Β· Ξ£ π β { π₯ β β β£ π₯ β₯ ( π / π ) } ( πΉ β π ) ) ) |
40 |
|
fzfid |
β’ ( ( ( π β§ π β β ) β§ π β { π₯ β β β£ π₯ β₯ π } ) β ( 1 ... ( π / π ) ) β Fin ) |
41 |
|
dvdsssfz1 |
β’ ( ( π / π ) β β β { π₯ β β β£ π₯ β₯ ( π / π ) } β ( 1 ... ( π / π ) ) ) |
42 |
30 41
|
syl |
β’ ( ( ( π β§ π β β ) β§ π β { π₯ β β β£ π₯ β₯ π } ) β { π₯ β β β£ π₯ β₯ ( π / π ) } β ( 1 ... ( π / π ) ) ) |
43 |
40 42
|
ssfid |
β’ ( ( ( π β§ π β β ) β§ π β { π₯ β β β£ π₯ β₯ π } ) β { π₯ β β β£ π₯ β₯ ( π / π ) } β Fin ) |
44 |
|
mucl |
β’ ( π β β β ( ΞΌ β π ) β β€ ) |
45 |
11 44
|
syl |
β’ ( ( ( π β§ π β β ) β§ π β { π₯ β β β£ π₯ β₯ π } ) β ( ΞΌ β π ) β β€ ) |
46 |
45
|
zcnd |
β’ ( ( ( π β§ π β β ) β§ π β { π₯ β β β£ π₯ β₯ π } ) β ( ΞΌ β π ) β β ) |
47 |
1
|
ad2antrr |
β’ ( ( ( π β§ π β β ) β§ π β { π₯ β β β£ π₯ β₯ π } ) β πΉ : β βΆ β ) |
48 |
|
elrabi |
β’ ( π β { π₯ β β β£ π₯ β₯ ( π / π ) } β π β β ) |
49 |
|
ffvelcdm |
β’ ( ( πΉ : β βΆ β β§ π β β ) β ( πΉ β π ) β β ) |
50 |
47 48 49
|
syl2an |
β’ ( ( ( ( π β§ π β β ) β§ π β { π₯ β β β£ π₯ β₯ π } ) β§ π β { π₯ β β β£ π₯ β₯ ( π / π ) } ) β ( πΉ β π ) β β ) |
51 |
43 46 50
|
fsummulc2 |
β’ ( ( ( π β§ π β β ) β§ π β { π₯ β β β£ π₯ β₯ π } ) β ( ( ΞΌ β π ) Β· Ξ£ π β { π₯ β β β£ π₯ β₯ ( π / π ) } ( πΉ β π ) ) = Ξ£ π β { π₯ β β β£ π₯ β₯ ( π / π ) } ( ( ΞΌ β π ) Β· ( πΉ β π ) ) ) |
52 |
39 51
|
eqtrd |
β’ ( ( ( π β§ π β β ) β§ π β { π₯ β β β£ π₯ β₯ π } ) β ( ( ΞΌ β π ) Β· ( πΊ β ( π / π ) ) ) = Ξ£ π β { π₯ β β β£ π₯ β₯ ( π / π ) } ( ( ΞΌ β π ) Β· ( πΉ β π ) ) ) |
53 |
52
|
sumeq2dv |
β’ ( ( π β§ π β β ) β Ξ£ π β { π₯ β β β£ π₯ β₯ π } ( ( ΞΌ β π ) Β· ( πΊ β ( π / π ) ) ) = Ξ£ π β { π₯ β β β£ π₯ β₯ π } Ξ£ π β { π₯ β β β£ π₯ β₯ ( π / π ) } ( ( ΞΌ β π ) Β· ( πΉ β π ) ) ) |
54 |
|
simpr |
β’ ( ( π β§ π β β ) β π β β ) |
55 |
46
|
adantrr |
β’ ( ( ( π β§ π β β ) β§ ( π β { π₯ β β β£ π₯ β₯ π } β§ π β { π₯ β β β£ π₯ β₯ ( π / π ) } ) ) β ( ΞΌ β π ) β β ) |
56 |
50
|
anasss |
β’ ( ( ( π β§ π β β ) β§ ( π β { π₯ β β β£ π₯ β₯ π } β§ π β { π₯ β β β£ π₯ β₯ ( π / π ) } ) ) β ( πΉ β π ) β β ) |
57 |
55 56
|
mulcld |
β’ ( ( ( π β§ π β β ) β§ ( π β { π₯ β β β£ π₯ β₯ π } β§ π β { π₯ β β β£ π₯ β₯ ( π / π ) } ) ) β ( ( ΞΌ β π ) Β· ( πΉ β π ) ) β β ) |
58 |
54 57
|
fsumdvdsdiag |
β’ ( ( π β§ π β β ) β Ξ£ π β { π₯ β β β£ π₯ β₯ π } Ξ£ π β { π₯ β β β£ π₯ β₯ ( π / π ) } ( ( ΞΌ β π ) Β· ( πΉ β π ) ) = Ξ£ π β { π₯ β β β£ π₯ β₯ π } Ξ£ π β { π₯ β β β£ π₯ β₯ ( π / π ) } ( ( ΞΌ β π ) Β· ( πΉ β π ) ) ) |
59 |
|
ssrab2 |
β’ { π₯ β β β£ π₯ β₯ π } β β |
60 |
|
dvdsdivcl |
β’ ( ( π β β β§ π β { π₯ β β β£ π₯ β₯ π } ) β ( π / π ) β { π₯ β β β£ π₯ β₯ π } ) |
61 |
60
|
adantll |
β’ ( ( ( π β§ π β β ) β§ π β { π₯ β β β£ π₯ β₯ π } ) β ( π / π ) β { π₯ β β β£ π₯ β₯ π } ) |
62 |
59 61
|
sselid |
β’ ( ( ( π β§ π β β ) β§ π β { π₯ β β β£ π₯ β₯ π } ) β ( π / π ) β β ) |
63 |
|
musum |
β’ ( ( π / π ) β β β Ξ£ π β { π₯ β β β£ π₯ β₯ ( π / π ) } ( ΞΌ β π ) = if ( ( π / π ) = 1 , 1 , 0 ) ) |
64 |
62 63
|
syl |
β’ ( ( ( π β§ π β β ) β§ π β { π₯ β β β£ π₯ β₯ π } ) β Ξ£ π β { π₯ β β β£ π₯ β₯ ( π / π ) } ( ΞΌ β π ) = if ( ( π / π ) = 1 , 1 , 0 ) ) |
65 |
64
|
oveq1d |
β’ ( ( ( π β§ π β β ) β§ π β { π₯ β β β£ π₯ β₯ π } ) β ( Ξ£ π β { π₯ β β β£ π₯ β₯ ( π / π ) } ( ΞΌ β π ) Β· ( πΉ β π ) ) = ( if ( ( π / π ) = 1 , 1 , 0 ) Β· ( πΉ β π ) ) ) |
66 |
|
fzfid |
β’ ( ( ( π β§ π β β ) β§ π β { π₯ β β β£ π₯ β₯ π } ) β ( 1 ... ( π / π ) ) β Fin ) |
67 |
|
dvdsssfz1 |
β’ ( ( π / π ) β β β { π₯ β β β£ π₯ β₯ ( π / π ) } β ( 1 ... ( π / π ) ) ) |
68 |
62 67
|
syl |
β’ ( ( ( π β§ π β β ) β§ π β { π₯ β β β£ π₯ β₯ π } ) β { π₯ β β β£ π₯ β₯ ( π / π ) } β ( 1 ... ( π / π ) ) ) |
69 |
66 68
|
ssfid |
β’ ( ( ( π β§ π β β ) β§ π β { π₯ β β β£ π₯ β₯ π } ) β { π₯ β β β£ π₯ β₯ ( π / π ) } β Fin ) |
70 |
1
|
adantr |
β’ ( ( π β§ π β β ) β πΉ : β βΆ β ) |
71 |
|
elrabi |
β’ ( π β { π₯ β β β£ π₯ β₯ π } β π β β ) |
72 |
70 71 49
|
syl2an |
β’ ( ( ( π β§ π β β ) β§ π β { π₯ β β β£ π₯ β₯ π } ) β ( πΉ β π ) β β ) |
73 |
|
ssrab2 |
β’ { π₯ β β β£ π₯ β₯ ( π / π ) } β β |
74 |
|
simpr |
β’ ( ( ( ( π β§ π β β ) β§ π β { π₯ β β β£ π₯ β₯ π } ) β§ π β { π₯ β β β£ π₯ β₯ ( π / π ) } ) β π β { π₯ β β β£ π₯ β₯ ( π / π ) } ) |
75 |
73 74
|
sselid |
β’ ( ( ( ( π β§ π β β ) β§ π β { π₯ β β β£ π₯ β₯ π } ) β§ π β { π₯ β β β£ π₯ β₯ ( π / π ) } ) β π β β ) |
76 |
75 44
|
syl |
β’ ( ( ( ( π β§ π β β ) β§ π β { π₯ β β β£ π₯ β₯ π } ) β§ π β { π₯ β β β£ π₯ β₯ ( π / π ) } ) β ( ΞΌ β π ) β β€ ) |
77 |
76
|
zcnd |
β’ ( ( ( ( π β§ π β β ) β§ π β { π₯ β β β£ π₯ β₯ π } ) β§ π β { π₯ β β β£ π₯ β₯ ( π / π ) } ) β ( ΞΌ β π ) β β ) |
78 |
69 72 77
|
fsummulc1 |
β’ ( ( ( π β§ π β β ) β§ π β { π₯ β β β£ π₯ β₯ π } ) β ( Ξ£ π β { π₯ β β β£ π₯ β₯ ( π / π ) } ( ΞΌ β π ) Β· ( πΉ β π ) ) = Ξ£ π β { π₯ β β β£ π₯ β₯ ( π / π ) } ( ( ΞΌ β π ) Β· ( πΉ β π ) ) ) |
79 |
|
ovif |
β’ ( if ( ( π / π ) = 1 , 1 , 0 ) Β· ( πΉ β π ) ) = if ( ( π / π ) = 1 , ( 1 Β· ( πΉ β π ) ) , ( 0 Β· ( πΉ β π ) ) ) |
80 |
|
nncn |
β’ ( π β β β π β β ) |
81 |
80
|
ad2antlr |
β’ ( ( ( π β§ π β β ) β§ π β { π₯ β β β£ π₯ β₯ π } ) β π β β ) |
82 |
71
|
adantl |
β’ ( ( ( π β§ π β β ) β§ π β { π₯ β β β£ π₯ β₯ π } ) β π β β ) |
83 |
82
|
nncnd |
β’ ( ( ( π β§ π β β ) β§ π β { π₯ β β β£ π₯ β₯ π } ) β π β β ) |
84 |
|
1cnd |
β’ ( ( ( π β§ π β β ) β§ π β { π₯ β β β£ π₯ β₯ π } ) β 1 β β ) |
85 |
82
|
nnne0d |
β’ ( ( ( π β§ π β β ) β§ π β { π₯ β β β£ π₯ β₯ π } ) β π β 0 ) |
86 |
81 83 84 85
|
divmuld |
β’ ( ( ( π β§ π β β ) β§ π β { π₯ β β β£ π₯ β₯ π } ) β ( ( π / π ) = 1 β ( π Β· 1 ) = π ) ) |
87 |
83
|
mulridd |
β’ ( ( ( π β§ π β β ) β§ π β { π₯ β β β£ π₯ β₯ π } ) β ( π Β· 1 ) = π ) |
88 |
87
|
eqeq1d |
β’ ( ( ( π β§ π β β ) β§ π β { π₯ β β β£ π₯ β₯ π } ) β ( ( π Β· 1 ) = π β π = π ) ) |
89 |
86 88
|
bitrd |
β’ ( ( ( π β§ π β β ) β§ π β { π₯ β β β£ π₯ β₯ π } ) β ( ( π / π ) = 1 β π = π ) ) |
90 |
72
|
mullidd |
β’ ( ( ( π β§ π β β ) β§ π β { π₯ β β β£ π₯ β₯ π } ) β ( 1 Β· ( πΉ β π ) ) = ( πΉ β π ) ) |
91 |
72
|
mul02d |
β’ ( ( ( π β§ π β β ) β§ π β { π₯ β β β£ π₯ β₯ π } ) β ( 0 Β· ( πΉ β π ) ) = 0 ) |
92 |
89 90 91
|
ifbieq12d |
β’ ( ( ( π β§ π β β ) β§ π β { π₯ β β β£ π₯ β₯ π } ) β if ( ( π / π ) = 1 , ( 1 Β· ( πΉ β π ) ) , ( 0 Β· ( πΉ β π ) ) ) = if ( π = π , ( πΉ β π ) , 0 ) ) |
93 |
79 92
|
eqtrid |
β’ ( ( ( π β§ π β β ) β§ π β { π₯ β β β£ π₯ β₯ π } ) β ( if ( ( π / π ) = 1 , 1 , 0 ) Β· ( πΉ β π ) ) = if ( π = π , ( πΉ β π ) , 0 ) ) |
94 |
65 78 93
|
3eqtr3d |
β’ ( ( ( π β§ π β β ) β§ π β { π₯ β β β£ π₯ β₯ π } ) β Ξ£ π β { π₯ β β β£ π₯ β₯ ( π / π ) } ( ( ΞΌ β π ) Β· ( πΉ β π ) ) = if ( π = π , ( πΉ β π ) , 0 ) ) |
95 |
94
|
sumeq2dv |
β’ ( ( π β§ π β β ) β Ξ£ π β { π₯ β β β£ π₯ β₯ π } Ξ£ π β { π₯ β β β£ π₯ β₯ ( π / π ) } ( ( ΞΌ β π ) Β· ( πΉ β π ) ) = Ξ£ π β { π₯ β β β£ π₯ β₯ π } if ( π = π , ( πΉ β π ) , 0 ) ) |
96 |
|
breq1 |
β’ ( π₯ = π β ( π₯ β₯ π β π β₯ π ) ) |
97 |
54
|
nnzd |
β’ ( ( π β§ π β β ) β π β β€ ) |
98 |
|
iddvds |
β’ ( π β β€ β π β₯ π ) |
99 |
97 98
|
syl |
β’ ( ( π β§ π β β ) β π β₯ π ) |
100 |
96 54 99
|
elrabd |
β’ ( ( π β§ π β β ) β π β { π₯ β β β£ π₯ β₯ π } ) |
101 |
100
|
snssd |
β’ ( ( π β§ π β β ) β { π } β { π₯ β β β£ π₯ β₯ π } ) |
102 |
101
|
sselda |
β’ ( ( ( π β§ π β β ) β§ π β { π } ) β π β { π₯ β β β£ π₯ β₯ π } ) |
103 |
102 72
|
syldan |
β’ ( ( ( π β§ π β β ) β§ π β { π } ) β ( πΉ β π ) β β ) |
104 |
|
0cn |
β’ 0 β β |
105 |
|
ifcl |
β’ ( ( ( πΉ β π ) β β β§ 0 β β ) β if ( π = π , ( πΉ β π ) , 0 ) β β ) |
106 |
103 104 105
|
sylancl |
β’ ( ( ( π β§ π β β ) β§ π β { π } ) β if ( π = π , ( πΉ β π ) , 0 ) β β ) |
107 |
|
eldifsni |
β’ ( π β ( { π₯ β β β£ π₯ β₯ π } β { π } ) β π β π ) |
108 |
107
|
adantl |
β’ ( ( ( π β§ π β β ) β§ π β ( { π₯ β β β£ π₯ β₯ π } β { π } ) ) β π β π ) |
109 |
108
|
neneqd |
β’ ( ( ( π β§ π β β ) β§ π β ( { π₯ β β β£ π₯ β₯ π } β { π } ) ) β Β¬ π = π ) |
110 |
109
|
iffalsed |
β’ ( ( ( π β§ π β β ) β§ π β ( { π₯ β β β£ π₯ β₯ π } β { π } ) ) β if ( π = π , ( πΉ β π ) , 0 ) = 0 ) |
111 |
|
fzfid |
β’ ( ( π β§ π β β ) β ( 1 ... π ) β Fin ) |
112 |
|
dvdsssfz1 |
β’ ( π β β β { π₯ β β β£ π₯ β₯ π } β ( 1 ... π ) ) |
113 |
112
|
adantl |
β’ ( ( π β§ π β β ) β { π₯ β β β£ π₯ β₯ π } β ( 1 ... π ) ) |
114 |
111 113
|
ssfid |
β’ ( ( π β§ π β β ) β { π₯ β β β£ π₯ β₯ π } β Fin ) |
115 |
101 106 110 114
|
fsumss |
β’ ( ( π β§ π β β ) β Ξ£ π β { π } if ( π = π , ( πΉ β π ) , 0 ) = Ξ£ π β { π₯ β β β£ π₯ β₯ π } if ( π = π , ( πΉ β π ) , 0 ) ) |
116 |
1
|
ffvelcdmda |
β’ ( ( π β§ π β β ) β ( πΉ β π ) β β ) |
117 |
|
iftrue |
β’ ( π = π β if ( π = π , ( πΉ β π ) , 0 ) = ( πΉ β π ) ) |
118 |
|
fveq2 |
β’ ( π = π β ( πΉ β π ) = ( πΉ β π ) ) |
119 |
117 118
|
eqtrd |
β’ ( π = π β if ( π = π , ( πΉ β π ) , 0 ) = ( πΉ β π ) ) |
120 |
119
|
sumsn |
β’ ( ( π β β β§ ( πΉ β π ) β β ) β Ξ£ π β { π } if ( π = π , ( πΉ β π ) , 0 ) = ( πΉ β π ) ) |
121 |
54 116 120
|
syl2anc |
β’ ( ( π β§ π β β ) β Ξ£ π β { π } if ( π = π , ( πΉ β π ) , 0 ) = ( πΉ β π ) ) |
122 |
95 115 121
|
3eqtr2d |
β’ ( ( π β§ π β β ) β Ξ£ π β { π₯ β β β£ π₯ β₯ π } Ξ£ π β { π₯ β β β£ π₯ β₯ ( π / π ) } ( ( ΞΌ β π ) Β· ( πΉ β π ) ) = ( πΉ β π ) ) |
123 |
53 58 122
|
3eqtrd |
β’ ( ( π β§ π β β ) β Ξ£ π β { π₯ β β β£ π₯ β₯ π } ( ( ΞΌ β π ) Β· ( πΊ β ( π / π ) ) ) = ( πΉ β π ) ) |
124 |
123
|
mpteq2dva |
β’ ( π β ( π β β β¦ Ξ£ π β { π₯ β β β£ π₯ β₯ π } ( ( ΞΌ β π ) Β· ( πΊ β ( π / π ) ) ) ) = ( π β β β¦ ( πΉ β π ) ) ) |
125 |
3 124
|
eqtr4d |
β’ ( π β πΉ = ( π β β β¦ Ξ£ π β { π₯ β β β£ π₯ β₯ π } ( ( ΞΌ β π ) Β· ( πΊ β ( π / π ) ) ) ) ) |