Step |
Hyp |
Ref |
Expression |
1 |
|
fsumdvdsdiag.1 |
⊢ ( 𝜑 → 𝑁 ∈ ℕ ) |
2 |
|
fsumdvdsdiag.2 |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ∧ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑗 ) } ) ) → 𝐴 ∈ ℂ ) |
3 |
|
fzfid |
⊢ ( 𝜑 → ( 1 ... 𝑁 ) ∈ Fin ) |
4 |
|
dvdsssfz1 |
⊢ ( 𝑁 ∈ ℕ → { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ⊆ ( 1 ... 𝑁 ) ) |
5 |
1 4
|
syl |
⊢ ( 𝜑 → { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ⊆ ( 1 ... 𝑁 ) ) |
6 |
3 5
|
ssfid |
⊢ ( 𝜑 → { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ∈ Fin ) |
7 |
|
fzfid |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ) → ( 1 ... ( 𝑁 / 𝑗 ) ) ∈ Fin ) |
8 |
|
ssrab2 |
⊢ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ⊆ ℕ |
9 |
|
dvdsdivcl |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ) → ( 𝑁 / 𝑗 ) ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ) |
10 |
1 9
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ) → ( 𝑁 / 𝑗 ) ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ) |
11 |
8 10
|
sselid |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ) → ( 𝑁 / 𝑗 ) ∈ ℕ ) |
12 |
|
dvdsssfz1 |
⊢ ( ( 𝑁 / 𝑗 ) ∈ ℕ → { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑗 ) } ⊆ ( 1 ... ( 𝑁 / 𝑗 ) ) ) |
13 |
11 12
|
syl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ) → { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑗 ) } ⊆ ( 1 ... ( 𝑁 / 𝑗 ) ) ) |
14 |
7 13
|
ssfid |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ) → { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑗 ) } ∈ Fin ) |
15 |
1
|
fsumdvdsdiaglem |
⊢ ( 𝜑 → ( ( 𝑗 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ∧ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑗 ) } ) → ( 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ∧ 𝑗 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑘 ) } ) ) ) |
16 |
1
|
fsumdvdsdiaglem |
⊢ ( 𝜑 → ( ( 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ∧ 𝑗 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑘 ) } ) → ( 𝑗 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ∧ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑗 ) } ) ) ) |
17 |
15 16
|
impbid |
⊢ ( 𝜑 → ( ( 𝑗 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ∧ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑗 ) } ) ↔ ( 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ∧ 𝑗 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑘 ) } ) ) ) |
18 |
6 6 14 17 2
|
fsumcom2 |
⊢ ( 𝜑 → Σ 𝑗 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } Σ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑗 ) } 𝐴 = Σ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } Σ 𝑗 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑘 ) } 𝐴 ) |