| Step |
Hyp |
Ref |
Expression |
| 1 |
|
breq1 |
⊢ ( 𝑥 = 𝐴 → ( 𝑥 ∥ 𝑁 ↔ 𝐴 ∥ 𝑁 ) ) |
| 2 |
1
|
elrab |
⊢ ( 𝐴 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ↔ ( 𝐴 ∈ ℕ ∧ 𝐴 ∥ 𝑁 ) ) |
| 3 |
|
nndivdvds |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℕ ) → ( 𝐴 ∥ 𝑁 ↔ ( 𝑁 / 𝐴 ) ∈ ℕ ) ) |
| 4 |
3
|
biimpd |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℕ ) → ( 𝐴 ∥ 𝑁 → ( 𝑁 / 𝐴 ) ∈ ℕ ) ) |
| 5 |
4
|
expcom |
⊢ ( 𝐴 ∈ ℕ → ( 𝑁 ∈ ℕ → ( 𝐴 ∥ 𝑁 → ( 𝑁 / 𝐴 ) ∈ ℕ ) ) ) |
| 6 |
5
|
com23 |
⊢ ( 𝐴 ∈ ℕ → ( 𝐴 ∥ 𝑁 → ( 𝑁 ∈ ℕ → ( 𝑁 / 𝐴 ) ∈ ℕ ) ) ) |
| 7 |
6
|
imp |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐴 ∥ 𝑁 ) → ( 𝑁 ∈ ℕ → ( 𝑁 / 𝐴 ) ∈ ℕ ) ) |
| 8 |
|
nnne0 |
⊢ ( 𝐴 ∈ ℕ → 𝐴 ≠ 0 ) |
| 9 |
8
|
anim1ci |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐴 ∥ 𝑁 ) → ( 𝐴 ∥ 𝑁 ∧ 𝐴 ≠ 0 ) ) |
| 10 |
|
divconjdvds |
⊢ ( ( 𝐴 ∥ 𝑁 ∧ 𝐴 ≠ 0 ) → ( 𝑁 / 𝐴 ) ∥ 𝑁 ) |
| 11 |
9 10
|
syl |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐴 ∥ 𝑁 ) → ( 𝑁 / 𝐴 ) ∥ 𝑁 ) |
| 12 |
7 11
|
jctird |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐴 ∥ 𝑁 ) → ( 𝑁 ∈ ℕ → ( ( 𝑁 / 𝐴 ) ∈ ℕ ∧ ( 𝑁 / 𝐴 ) ∥ 𝑁 ) ) ) |
| 13 |
2 12
|
sylbi |
⊢ ( 𝐴 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } → ( 𝑁 ∈ ℕ → ( ( 𝑁 / 𝐴 ) ∈ ℕ ∧ ( 𝑁 / 𝐴 ) ∥ 𝑁 ) ) ) |
| 14 |
13
|
impcom |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ) → ( ( 𝑁 / 𝐴 ) ∈ ℕ ∧ ( 𝑁 / 𝐴 ) ∥ 𝑁 ) ) |
| 15 |
|
breq1 |
⊢ ( 𝑥 = ( 𝑁 / 𝐴 ) → ( 𝑥 ∥ 𝑁 ↔ ( 𝑁 / 𝐴 ) ∥ 𝑁 ) ) |
| 16 |
15
|
elrab |
⊢ ( ( 𝑁 / 𝐴 ) ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ↔ ( ( 𝑁 / 𝐴 ) ∈ ℕ ∧ ( 𝑁 / 𝐴 ) ∥ 𝑁 ) ) |
| 17 |
14 16
|
sylibr |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ) → ( 𝑁 / 𝐴 ) ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ) |