| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dvdsflip.a | ⊢ 𝐴  =  { 𝑥  ∈  ℕ  ∣  𝑥  ∥  𝑁 } | 
						
							| 2 |  | dvdsflip.f | ⊢ 𝐹  =  ( 𝑦  ∈  𝐴  ↦  ( 𝑁  /  𝑦 ) ) | 
						
							| 3 | 1 | eleq2i | ⊢ ( 𝑦  ∈  𝐴  ↔  𝑦  ∈  { 𝑥  ∈  ℕ  ∣  𝑥  ∥  𝑁 } ) | 
						
							| 4 |  | dvdsdivcl | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑦  ∈  { 𝑥  ∈  ℕ  ∣  𝑥  ∥  𝑁 } )  →  ( 𝑁  /  𝑦 )  ∈  { 𝑥  ∈  ℕ  ∣  𝑥  ∥  𝑁 } ) | 
						
							| 5 | 3 4 | sylan2b | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑦  ∈  𝐴 )  →  ( 𝑁  /  𝑦 )  ∈  { 𝑥  ∈  ℕ  ∣  𝑥  ∥  𝑁 } ) | 
						
							| 6 | 5 1 | eleqtrrdi | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑦  ∈  𝐴 )  →  ( 𝑁  /  𝑦 )  ∈  𝐴 ) | 
						
							| 7 | 1 | eleq2i | ⊢ ( 𝑧  ∈  𝐴  ↔  𝑧  ∈  { 𝑥  ∈  ℕ  ∣  𝑥  ∥  𝑁 } ) | 
						
							| 8 |  | dvdsdivcl | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑧  ∈  { 𝑥  ∈  ℕ  ∣  𝑥  ∥  𝑁 } )  →  ( 𝑁  /  𝑧 )  ∈  { 𝑥  ∈  ℕ  ∣  𝑥  ∥  𝑁 } ) | 
						
							| 9 | 7 8 | sylan2b | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑧  ∈  𝐴 )  →  ( 𝑁  /  𝑧 )  ∈  { 𝑥  ∈  ℕ  ∣  𝑥  ∥  𝑁 } ) | 
						
							| 10 | 9 1 | eleqtrrdi | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑧  ∈  𝐴 )  →  ( 𝑁  /  𝑧 )  ∈  𝐴 ) | 
						
							| 11 | 1 | ssrab3 | ⊢ 𝐴  ⊆  ℕ | 
						
							| 12 | 11 | sseli | ⊢ ( 𝑦  ∈  𝐴  →  𝑦  ∈  ℕ ) | 
						
							| 13 | 11 | sseli | ⊢ ( 𝑧  ∈  𝐴  →  𝑧  ∈  ℕ ) | 
						
							| 14 | 12 13 | anim12i | ⊢ ( ( 𝑦  ∈  𝐴  ∧  𝑧  ∈  𝐴 )  →  ( 𝑦  ∈  ℕ  ∧  𝑧  ∈  ℕ ) ) | 
						
							| 15 |  | nncn | ⊢ ( 𝑁  ∈  ℕ  →  𝑁  ∈  ℂ ) | 
						
							| 16 | 15 | adantr | ⊢ ( ( 𝑁  ∈  ℕ  ∧  ( 𝑦  ∈  ℕ  ∧  𝑧  ∈  ℕ ) )  →  𝑁  ∈  ℂ ) | 
						
							| 17 |  | nncn | ⊢ ( 𝑦  ∈  ℕ  →  𝑦  ∈  ℂ ) | 
						
							| 18 | 17 | ad2antrl | ⊢ ( ( 𝑁  ∈  ℕ  ∧  ( 𝑦  ∈  ℕ  ∧  𝑧  ∈  ℕ ) )  →  𝑦  ∈  ℂ ) | 
						
							| 19 |  | nncn | ⊢ ( 𝑧  ∈  ℕ  →  𝑧  ∈  ℂ ) | 
						
							| 20 | 19 | ad2antll | ⊢ ( ( 𝑁  ∈  ℕ  ∧  ( 𝑦  ∈  ℕ  ∧  𝑧  ∈  ℕ ) )  →  𝑧  ∈  ℂ ) | 
						
							| 21 |  | nnne0 | ⊢ ( 𝑧  ∈  ℕ  →  𝑧  ≠  0 ) | 
						
							| 22 | 21 | ad2antll | ⊢ ( ( 𝑁  ∈  ℕ  ∧  ( 𝑦  ∈  ℕ  ∧  𝑧  ∈  ℕ ) )  →  𝑧  ≠  0 ) | 
						
							| 23 | 16 18 20 22 | divmul3d | ⊢ ( ( 𝑁  ∈  ℕ  ∧  ( 𝑦  ∈  ℕ  ∧  𝑧  ∈  ℕ ) )  →  ( ( 𝑁  /  𝑧 )  =  𝑦  ↔  𝑁  =  ( 𝑦  ·  𝑧 ) ) ) | 
						
							| 24 |  | nnne0 | ⊢ ( 𝑦  ∈  ℕ  →  𝑦  ≠  0 ) | 
						
							| 25 | 24 | ad2antrl | ⊢ ( ( 𝑁  ∈  ℕ  ∧  ( 𝑦  ∈  ℕ  ∧  𝑧  ∈  ℕ ) )  →  𝑦  ≠  0 ) | 
						
							| 26 | 16 20 18 25 | divmul2d | ⊢ ( ( 𝑁  ∈  ℕ  ∧  ( 𝑦  ∈  ℕ  ∧  𝑧  ∈  ℕ ) )  →  ( ( 𝑁  /  𝑦 )  =  𝑧  ↔  𝑁  =  ( 𝑦  ·  𝑧 ) ) ) | 
						
							| 27 | 23 26 | bitr4d | ⊢ ( ( 𝑁  ∈  ℕ  ∧  ( 𝑦  ∈  ℕ  ∧  𝑧  ∈  ℕ ) )  →  ( ( 𝑁  /  𝑧 )  =  𝑦  ↔  ( 𝑁  /  𝑦 )  =  𝑧 ) ) | 
						
							| 28 | 14 27 | sylan2 | ⊢ ( ( 𝑁  ∈  ℕ  ∧  ( 𝑦  ∈  𝐴  ∧  𝑧  ∈  𝐴 ) )  →  ( ( 𝑁  /  𝑧 )  =  𝑦  ↔  ( 𝑁  /  𝑦 )  =  𝑧 ) ) | 
						
							| 29 |  | eqcom | ⊢ ( 𝑦  =  ( 𝑁  /  𝑧 )  ↔  ( 𝑁  /  𝑧 )  =  𝑦 ) | 
						
							| 30 |  | eqcom | ⊢ ( 𝑧  =  ( 𝑁  /  𝑦 )  ↔  ( 𝑁  /  𝑦 )  =  𝑧 ) | 
						
							| 31 | 28 29 30 | 3bitr4g | ⊢ ( ( 𝑁  ∈  ℕ  ∧  ( 𝑦  ∈  𝐴  ∧  𝑧  ∈  𝐴 ) )  →  ( 𝑦  =  ( 𝑁  /  𝑧 )  ↔  𝑧  =  ( 𝑁  /  𝑦 ) ) ) | 
						
							| 32 | 2 6 10 31 | f1o2d | ⊢ ( 𝑁  ∈  ℕ  →  𝐹 : 𝐴 –1-1-onto→ 𝐴 ) |