Step |
Hyp |
Ref |
Expression |
1 |
|
fsumdvdscom.1 |
⊢ ( 𝜑 → 𝑁 ∈ ℕ ) |
2 |
|
fsumdvdscom.2 |
⊢ ( 𝑗 = ( 𝑘 · 𝑚 ) → 𝐴 = 𝐵 ) |
3 |
|
fsumdvdscom.3 |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ∧ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑗 } ) ) → 𝐴 ∈ ℂ ) |
4 |
|
nfcv |
⊢ Ⅎ 𝑢 Σ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑗 } 𝐴 |
5 |
|
nfcv |
⊢ Ⅎ 𝑗 { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑢 } |
6 |
|
nfcsb1v |
⊢ Ⅎ 𝑗 ⦋ 𝑢 / 𝑗 ⦌ 𝐴 |
7 |
5 6
|
nfsum |
⊢ Ⅎ 𝑗 Σ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑢 } ⦋ 𝑢 / 𝑗 ⦌ 𝐴 |
8 |
|
breq2 |
⊢ ( 𝑗 = 𝑢 → ( 𝑥 ∥ 𝑗 ↔ 𝑥 ∥ 𝑢 ) ) |
9 |
8
|
rabbidv |
⊢ ( 𝑗 = 𝑢 → { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑗 } = { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑢 } ) |
10 |
|
csbeq1a |
⊢ ( 𝑗 = 𝑢 → 𝐴 = ⦋ 𝑢 / 𝑗 ⦌ 𝐴 ) |
11 |
10
|
adantr |
⊢ ( ( 𝑗 = 𝑢 ∧ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑗 } ) → 𝐴 = ⦋ 𝑢 / 𝑗 ⦌ 𝐴 ) |
12 |
9 11
|
sumeq12dv |
⊢ ( 𝑗 = 𝑢 → Σ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑗 } 𝐴 = Σ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑢 } ⦋ 𝑢 / 𝑗 ⦌ 𝐴 ) |
13 |
4 7 12
|
cbvsumi |
⊢ Σ 𝑗 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } Σ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑗 } 𝐴 = Σ 𝑢 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } Σ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑢 } ⦋ 𝑢 / 𝑗 ⦌ 𝐴 |
14 |
|
breq2 |
⊢ ( 𝑢 = ( 𝑁 / 𝑣 ) → ( 𝑥 ∥ 𝑢 ↔ 𝑥 ∥ ( 𝑁 / 𝑣 ) ) ) |
15 |
14
|
rabbidv |
⊢ ( 𝑢 = ( 𝑁 / 𝑣 ) → { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑢 } = { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑣 ) } ) |
16 |
|
csbeq1 |
⊢ ( 𝑢 = ( 𝑁 / 𝑣 ) → ⦋ 𝑢 / 𝑗 ⦌ 𝐴 = ⦋ ( 𝑁 / 𝑣 ) / 𝑗 ⦌ 𝐴 ) |
17 |
16
|
adantr |
⊢ ( ( 𝑢 = ( 𝑁 / 𝑣 ) ∧ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑢 } ) → ⦋ 𝑢 / 𝑗 ⦌ 𝐴 = ⦋ ( 𝑁 / 𝑣 ) / 𝑗 ⦌ 𝐴 ) |
18 |
15 17
|
sumeq12dv |
⊢ ( 𝑢 = ( 𝑁 / 𝑣 ) → Σ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑢 } ⦋ 𝑢 / 𝑗 ⦌ 𝐴 = Σ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑣 ) } ⦋ ( 𝑁 / 𝑣 ) / 𝑗 ⦌ 𝐴 ) |
19 |
|
fzfid |
⊢ ( 𝜑 → ( 1 ... 𝑁 ) ∈ Fin ) |
20 |
|
dvdsssfz1 |
⊢ ( 𝑁 ∈ ℕ → { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ⊆ ( 1 ... 𝑁 ) ) |
21 |
1 20
|
syl |
⊢ ( 𝜑 → { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ⊆ ( 1 ... 𝑁 ) ) |
22 |
19 21
|
ssfid |
⊢ ( 𝜑 → { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ∈ Fin ) |
23 |
|
eqid |
⊢ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } = { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } |
24 |
|
eqid |
⊢ ( 𝑧 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ↦ ( 𝑁 / 𝑧 ) ) = ( 𝑧 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ↦ ( 𝑁 / 𝑧 ) ) |
25 |
23 24
|
dvdsflip |
⊢ ( 𝑁 ∈ ℕ → ( 𝑧 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ↦ ( 𝑁 / 𝑧 ) ) : { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } –1-1-onto→ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ) |
26 |
1 25
|
syl |
⊢ ( 𝜑 → ( 𝑧 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ↦ ( 𝑁 / 𝑧 ) ) : { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } –1-1-onto→ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ) |
27 |
|
oveq2 |
⊢ ( 𝑧 = 𝑣 → ( 𝑁 / 𝑧 ) = ( 𝑁 / 𝑣 ) ) |
28 |
|
ovex |
⊢ ( 𝑁 / 𝑧 ) ∈ V |
29 |
27 24 28
|
fvmpt3i |
⊢ ( 𝑣 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } → ( ( 𝑧 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ↦ ( 𝑁 / 𝑧 ) ) ‘ 𝑣 ) = ( 𝑁 / 𝑣 ) ) |
30 |
29
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑣 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ) → ( ( 𝑧 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ↦ ( 𝑁 / 𝑧 ) ) ‘ 𝑣 ) = ( 𝑁 / 𝑣 ) ) |
31 |
|
fzfid |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ) → ( 1 ... 𝑢 ) ∈ Fin ) |
32 |
|
ssrab2 |
⊢ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ⊆ ℕ |
33 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ) → 𝑢 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ) |
34 |
32 33
|
sselid |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ) → 𝑢 ∈ ℕ ) |
35 |
|
dvdsssfz1 |
⊢ ( 𝑢 ∈ ℕ → { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑢 } ⊆ ( 1 ... 𝑢 ) ) |
36 |
34 35
|
syl |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ) → { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑢 } ⊆ ( 1 ... 𝑢 ) ) |
37 |
31 36
|
ssfid |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ) → { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑢 } ∈ Fin ) |
38 |
3
|
ralrimivva |
⊢ ( 𝜑 → ∀ 𝑗 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ∀ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑗 } 𝐴 ∈ ℂ ) |
39 |
|
nfv |
⊢ Ⅎ 𝑢 ∀ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑗 } 𝐴 ∈ ℂ |
40 |
6
|
nfel1 |
⊢ Ⅎ 𝑗 ⦋ 𝑢 / 𝑗 ⦌ 𝐴 ∈ ℂ |
41 |
5 40
|
nfralw |
⊢ Ⅎ 𝑗 ∀ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑢 } ⦋ 𝑢 / 𝑗 ⦌ 𝐴 ∈ ℂ |
42 |
10
|
eleq1d |
⊢ ( 𝑗 = 𝑢 → ( 𝐴 ∈ ℂ ↔ ⦋ 𝑢 / 𝑗 ⦌ 𝐴 ∈ ℂ ) ) |
43 |
9 42
|
raleqbidv |
⊢ ( 𝑗 = 𝑢 → ( ∀ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑗 } 𝐴 ∈ ℂ ↔ ∀ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑢 } ⦋ 𝑢 / 𝑗 ⦌ 𝐴 ∈ ℂ ) ) |
44 |
39 41 43
|
cbvralw |
⊢ ( ∀ 𝑗 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ∀ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑗 } 𝐴 ∈ ℂ ↔ ∀ 𝑢 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ∀ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑢 } ⦋ 𝑢 / 𝑗 ⦌ 𝐴 ∈ ℂ ) |
45 |
38 44
|
sylib |
⊢ ( 𝜑 → ∀ 𝑢 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ∀ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑢 } ⦋ 𝑢 / 𝑗 ⦌ 𝐴 ∈ ℂ ) |
46 |
45
|
r19.21bi |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ) → ∀ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑢 } ⦋ 𝑢 / 𝑗 ⦌ 𝐴 ∈ ℂ ) |
47 |
46
|
r19.21bi |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ) ∧ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑢 } ) → ⦋ 𝑢 / 𝑗 ⦌ 𝐴 ∈ ℂ ) |
48 |
37 47
|
fsumcl |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ) → Σ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑢 } ⦋ 𝑢 / 𝑗 ⦌ 𝐴 ∈ ℂ ) |
49 |
18 22 26 30 48
|
fsumf1o |
⊢ ( 𝜑 → Σ 𝑢 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } Σ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑢 } ⦋ 𝑢 / 𝑗 ⦌ 𝐴 = Σ 𝑣 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } Σ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑣 ) } ⦋ ( 𝑁 / 𝑣 ) / 𝑗 ⦌ 𝐴 ) |
50 |
16
|
eleq1d |
⊢ ( 𝑢 = ( 𝑁 / 𝑣 ) → ( ⦋ 𝑢 / 𝑗 ⦌ 𝐴 ∈ ℂ ↔ ⦋ ( 𝑁 / 𝑣 ) / 𝑗 ⦌ 𝐴 ∈ ℂ ) ) |
51 |
15 50
|
raleqbidv |
⊢ ( 𝑢 = ( 𝑁 / 𝑣 ) → ( ∀ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑢 } ⦋ 𝑢 / 𝑗 ⦌ 𝐴 ∈ ℂ ↔ ∀ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑣 ) } ⦋ ( 𝑁 / 𝑣 ) / 𝑗 ⦌ 𝐴 ∈ ℂ ) ) |
52 |
45
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑣 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ) → ∀ 𝑢 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ∀ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑢 } ⦋ 𝑢 / 𝑗 ⦌ 𝐴 ∈ ℂ ) |
53 |
|
dvdsdivcl |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑣 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ) → ( 𝑁 / 𝑣 ) ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ) |
54 |
1 53
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑣 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ) → ( 𝑁 / 𝑣 ) ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ) |
55 |
51 52 54
|
rspcdva |
⊢ ( ( 𝜑 ∧ 𝑣 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ) → ∀ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑣 ) } ⦋ ( 𝑁 / 𝑣 ) / 𝑗 ⦌ 𝐴 ∈ ℂ ) |
56 |
55
|
r19.21bi |
⊢ ( ( ( 𝜑 ∧ 𝑣 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ) ∧ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑣 ) } ) → ⦋ ( 𝑁 / 𝑣 ) / 𝑗 ⦌ 𝐴 ∈ ℂ ) |
57 |
56
|
anasss |
⊢ ( ( 𝜑 ∧ ( 𝑣 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ∧ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑣 ) } ) ) → ⦋ ( 𝑁 / 𝑣 ) / 𝑗 ⦌ 𝐴 ∈ ℂ ) |
58 |
1 57
|
fsumdvdsdiag |
⊢ ( 𝜑 → Σ 𝑣 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } Σ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑣 ) } ⦋ ( 𝑁 / 𝑣 ) / 𝑗 ⦌ 𝐴 = Σ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } Σ 𝑣 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑘 ) } ⦋ ( 𝑁 / 𝑣 ) / 𝑗 ⦌ 𝐴 ) |
59 |
|
oveq2 |
⊢ ( 𝑣 = ( ( 𝑁 / 𝑘 ) / 𝑚 ) → ( 𝑁 / 𝑣 ) = ( 𝑁 / ( ( 𝑁 / 𝑘 ) / 𝑚 ) ) ) |
60 |
59
|
csbeq1d |
⊢ ( 𝑣 = ( ( 𝑁 / 𝑘 ) / 𝑚 ) → ⦋ ( 𝑁 / 𝑣 ) / 𝑗 ⦌ 𝐴 = ⦋ ( 𝑁 / ( ( 𝑁 / 𝑘 ) / 𝑚 ) ) / 𝑗 ⦌ 𝐴 ) |
61 |
|
fzfid |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ) → ( 1 ... ( 𝑁 / 𝑘 ) ) ∈ Fin ) |
62 |
|
dvdsdivcl |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ) → ( 𝑁 / 𝑘 ) ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ) |
63 |
32 62
|
sselid |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ) → ( 𝑁 / 𝑘 ) ∈ ℕ ) |
64 |
1 63
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ) → ( 𝑁 / 𝑘 ) ∈ ℕ ) |
65 |
|
dvdsssfz1 |
⊢ ( ( 𝑁 / 𝑘 ) ∈ ℕ → { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑘 ) } ⊆ ( 1 ... ( 𝑁 / 𝑘 ) ) ) |
66 |
64 65
|
syl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ) → { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑘 ) } ⊆ ( 1 ... ( 𝑁 / 𝑘 ) ) ) |
67 |
61 66
|
ssfid |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ) → { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑘 ) } ∈ Fin ) |
68 |
|
eqid |
⊢ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑘 ) } = { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑘 ) } |
69 |
|
eqid |
⊢ ( 𝑧 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑘 ) } ↦ ( ( 𝑁 / 𝑘 ) / 𝑧 ) ) = ( 𝑧 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑘 ) } ↦ ( ( 𝑁 / 𝑘 ) / 𝑧 ) ) |
70 |
68 69
|
dvdsflip |
⊢ ( ( 𝑁 / 𝑘 ) ∈ ℕ → ( 𝑧 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑘 ) } ↦ ( ( 𝑁 / 𝑘 ) / 𝑧 ) ) : { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑘 ) } –1-1-onto→ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑘 ) } ) |
71 |
64 70
|
syl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ) → ( 𝑧 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑘 ) } ↦ ( ( 𝑁 / 𝑘 ) / 𝑧 ) ) : { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑘 ) } –1-1-onto→ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑘 ) } ) |
72 |
|
oveq2 |
⊢ ( 𝑧 = 𝑚 → ( ( 𝑁 / 𝑘 ) / 𝑧 ) = ( ( 𝑁 / 𝑘 ) / 𝑚 ) ) |
73 |
|
ovex |
⊢ ( ( 𝑁 / 𝑘 ) / 𝑧 ) ∈ V |
74 |
72 69 73
|
fvmpt3i |
⊢ ( 𝑚 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑘 ) } → ( ( 𝑧 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑘 ) } ↦ ( ( 𝑁 / 𝑘 ) / 𝑧 ) ) ‘ 𝑚 ) = ( ( 𝑁 / 𝑘 ) / 𝑚 ) ) |
75 |
74
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ) ∧ 𝑚 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑘 ) } ) → ( ( 𝑧 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑘 ) } ↦ ( ( 𝑁 / 𝑘 ) / 𝑧 ) ) ‘ 𝑚 ) = ( ( 𝑁 / 𝑘 ) / 𝑚 ) ) |
76 |
1
|
fsumdvdsdiaglem |
⊢ ( 𝜑 → ( ( 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ∧ 𝑣 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑘 ) } ) → ( 𝑣 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ∧ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑣 ) } ) ) ) |
77 |
57
|
ex |
⊢ ( 𝜑 → ( ( 𝑣 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ∧ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑣 ) } ) → ⦋ ( 𝑁 / 𝑣 ) / 𝑗 ⦌ 𝐴 ∈ ℂ ) ) |
78 |
76 77
|
syld |
⊢ ( 𝜑 → ( ( 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ∧ 𝑣 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑘 ) } ) → ⦋ ( 𝑁 / 𝑣 ) / 𝑗 ⦌ 𝐴 ∈ ℂ ) ) |
79 |
78
|
impl |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ) ∧ 𝑣 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑘 ) } ) → ⦋ ( 𝑁 / 𝑣 ) / 𝑗 ⦌ 𝐴 ∈ ℂ ) |
80 |
60 67 71 75 79
|
fsumf1o |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ) → Σ 𝑣 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑘 ) } ⦋ ( 𝑁 / 𝑣 ) / 𝑗 ⦌ 𝐴 = Σ 𝑚 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑘 ) } ⦋ ( 𝑁 / ( ( 𝑁 / 𝑘 ) / 𝑚 ) ) / 𝑗 ⦌ 𝐴 ) |
81 |
|
ovexd |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ) ∧ 𝑚 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑘 ) } ) → ( 𝑁 / ( ( 𝑁 / 𝑘 ) / 𝑚 ) ) ∈ V ) |
82 |
|
nncn |
⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℂ ) |
83 |
|
nnne0 |
⊢ ( 𝑁 ∈ ℕ → 𝑁 ≠ 0 ) |
84 |
82 83
|
jca |
⊢ ( 𝑁 ∈ ℕ → ( 𝑁 ∈ ℂ ∧ 𝑁 ≠ 0 ) ) |
85 |
1 84
|
syl |
⊢ ( 𝜑 → ( 𝑁 ∈ ℂ ∧ 𝑁 ≠ 0 ) ) |
86 |
85
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ) ∧ 𝑚 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑘 ) } ) → ( 𝑁 ∈ ℂ ∧ 𝑁 ≠ 0 ) ) |
87 |
86
|
simpld |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ) ∧ 𝑚 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑘 ) } ) → 𝑁 ∈ ℂ ) |
88 |
|
elrabi |
⊢ ( 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } → 𝑘 ∈ ℕ ) |
89 |
88
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ) → 𝑘 ∈ ℕ ) |
90 |
89
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ) ∧ 𝑚 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑘 ) } ) → 𝑘 ∈ ℕ ) |
91 |
|
nncn |
⊢ ( 𝑘 ∈ ℕ → 𝑘 ∈ ℂ ) |
92 |
|
nnne0 |
⊢ ( 𝑘 ∈ ℕ → 𝑘 ≠ 0 ) |
93 |
91 92
|
jca |
⊢ ( 𝑘 ∈ ℕ → ( 𝑘 ∈ ℂ ∧ 𝑘 ≠ 0 ) ) |
94 |
90 93
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ) ∧ 𝑚 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑘 ) } ) → ( 𝑘 ∈ ℂ ∧ 𝑘 ≠ 0 ) ) |
95 |
|
elrabi |
⊢ ( 𝑚 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑘 ) } → 𝑚 ∈ ℕ ) |
96 |
95
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ) ∧ 𝑚 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑘 ) } ) → 𝑚 ∈ ℕ ) |
97 |
|
nncn |
⊢ ( 𝑚 ∈ ℕ → 𝑚 ∈ ℂ ) |
98 |
|
nnne0 |
⊢ ( 𝑚 ∈ ℕ → 𝑚 ≠ 0 ) |
99 |
97 98
|
jca |
⊢ ( 𝑚 ∈ ℕ → ( 𝑚 ∈ ℂ ∧ 𝑚 ≠ 0 ) ) |
100 |
96 99
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ) ∧ 𝑚 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑘 ) } ) → ( 𝑚 ∈ ℂ ∧ 𝑚 ≠ 0 ) ) |
101 |
|
divdiv1 |
⊢ ( ( 𝑁 ∈ ℂ ∧ ( 𝑘 ∈ ℂ ∧ 𝑘 ≠ 0 ) ∧ ( 𝑚 ∈ ℂ ∧ 𝑚 ≠ 0 ) ) → ( ( 𝑁 / 𝑘 ) / 𝑚 ) = ( 𝑁 / ( 𝑘 · 𝑚 ) ) ) |
102 |
87 94 100 101
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ) ∧ 𝑚 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑘 ) } ) → ( ( 𝑁 / 𝑘 ) / 𝑚 ) = ( 𝑁 / ( 𝑘 · 𝑚 ) ) ) |
103 |
102
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ) ∧ 𝑚 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑘 ) } ) → ( 𝑁 / ( ( 𝑁 / 𝑘 ) / 𝑚 ) ) = ( 𝑁 / ( 𝑁 / ( 𝑘 · 𝑚 ) ) ) ) |
104 |
|
nnmulcl |
⊢ ( ( 𝑘 ∈ ℕ ∧ 𝑚 ∈ ℕ ) → ( 𝑘 · 𝑚 ) ∈ ℕ ) |
105 |
89 95 104
|
syl2an |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ) ∧ 𝑚 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑘 ) } ) → ( 𝑘 · 𝑚 ) ∈ ℕ ) |
106 |
|
nncn |
⊢ ( ( 𝑘 · 𝑚 ) ∈ ℕ → ( 𝑘 · 𝑚 ) ∈ ℂ ) |
107 |
|
nnne0 |
⊢ ( ( 𝑘 · 𝑚 ) ∈ ℕ → ( 𝑘 · 𝑚 ) ≠ 0 ) |
108 |
106 107
|
jca |
⊢ ( ( 𝑘 · 𝑚 ) ∈ ℕ → ( ( 𝑘 · 𝑚 ) ∈ ℂ ∧ ( 𝑘 · 𝑚 ) ≠ 0 ) ) |
109 |
105 108
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ) ∧ 𝑚 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑘 ) } ) → ( ( 𝑘 · 𝑚 ) ∈ ℂ ∧ ( 𝑘 · 𝑚 ) ≠ 0 ) ) |
110 |
|
ddcan |
⊢ ( ( ( 𝑁 ∈ ℂ ∧ 𝑁 ≠ 0 ) ∧ ( ( 𝑘 · 𝑚 ) ∈ ℂ ∧ ( 𝑘 · 𝑚 ) ≠ 0 ) ) → ( 𝑁 / ( 𝑁 / ( 𝑘 · 𝑚 ) ) ) = ( 𝑘 · 𝑚 ) ) |
111 |
86 109 110
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ) ∧ 𝑚 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑘 ) } ) → ( 𝑁 / ( 𝑁 / ( 𝑘 · 𝑚 ) ) ) = ( 𝑘 · 𝑚 ) ) |
112 |
103 111
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ) ∧ 𝑚 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑘 ) } ) → ( 𝑁 / ( ( 𝑁 / 𝑘 ) / 𝑚 ) ) = ( 𝑘 · 𝑚 ) ) |
113 |
112
|
eqeq2d |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ) ∧ 𝑚 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑘 ) } ) → ( 𝑗 = ( 𝑁 / ( ( 𝑁 / 𝑘 ) / 𝑚 ) ) ↔ 𝑗 = ( 𝑘 · 𝑚 ) ) ) |
114 |
113
|
biimpa |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ) ∧ 𝑚 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑘 ) } ) ∧ 𝑗 = ( 𝑁 / ( ( 𝑁 / 𝑘 ) / 𝑚 ) ) ) → 𝑗 = ( 𝑘 · 𝑚 ) ) |
115 |
114 2
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ) ∧ 𝑚 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑘 ) } ) ∧ 𝑗 = ( 𝑁 / ( ( 𝑁 / 𝑘 ) / 𝑚 ) ) ) → 𝐴 = 𝐵 ) |
116 |
81 115
|
csbied |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ) ∧ 𝑚 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑘 ) } ) → ⦋ ( 𝑁 / ( ( 𝑁 / 𝑘 ) / 𝑚 ) ) / 𝑗 ⦌ 𝐴 = 𝐵 ) |
117 |
116
|
sumeq2dv |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ) → Σ 𝑚 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑘 ) } ⦋ ( 𝑁 / ( ( 𝑁 / 𝑘 ) / 𝑚 ) ) / 𝑗 ⦌ 𝐴 = Σ 𝑚 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑘 ) } 𝐵 ) |
118 |
80 117
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ) → Σ 𝑣 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑘 ) } ⦋ ( 𝑁 / 𝑣 ) / 𝑗 ⦌ 𝐴 = Σ 𝑚 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑘 ) } 𝐵 ) |
119 |
118
|
sumeq2dv |
⊢ ( 𝜑 → Σ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } Σ 𝑣 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑘 ) } ⦋ ( 𝑁 / 𝑣 ) / 𝑗 ⦌ 𝐴 = Σ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } Σ 𝑚 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑘 ) } 𝐵 ) |
120 |
49 58 119
|
3eqtrd |
⊢ ( 𝜑 → Σ 𝑢 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } Σ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑢 } ⦋ 𝑢 / 𝑗 ⦌ 𝐴 = Σ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } Σ 𝑚 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑘 ) } 𝐵 ) |
121 |
13 120
|
eqtrid |
⊢ ( 𝜑 → Σ 𝑗 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } Σ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑗 } 𝐴 = Σ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } Σ 𝑚 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑘 ) } 𝐵 ) |