| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fsumdvdscom.1 |
⊢ ( 𝜑 → 𝑁 ∈ ℕ ) |
| 2 |
|
fsumdvdscom.2 |
⊢ ( 𝑗 = ( 𝑘 · 𝑚 ) → 𝐴 = 𝐵 ) |
| 3 |
|
fsumdvdscom.3 |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ∧ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑗 } ) ) → 𝐴 ∈ ℂ ) |
| 4 |
|
breq2 |
⊢ ( 𝑗 = 𝑢 → ( 𝑥 ∥ 𝑗 ↔ 𝑥 ∥ 𝑢 ) ) |
| 5 |
4
|
rabbidv |
⊢ ( 𝑗 = 𝑢 → { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑗 } = { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑢 } ) |
| 6 |
|
csbeq1a |
⊢ ( 𝑗 = 𝑢 → 𝐴 = ⦋ 𝑢 / 𝑗 ⦌ 𝐴 ) |
| 7 |
6
|
adantr |
⊢ ( ( 𝑗 = 𝑢 ∧ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑗 } ) → 𝐴 = ⦋ 𝑢 / 𝑗 ⦌ 𝐴 ) |
| 8 |
5 7
|
sumeq12dv |
⊢ ( 𝑗 = 𝑢 → Σ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑗 } 𝐴 = Σ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑢 } ⦋ 𝑢 / 𝑗 ⦌ 𝐴 ) |
| 9 |
|
nfcv |
⊢ Ⅎ 𝑢 Σ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑗 } 𝐴 |
| 10 |
|
nfcv |
⊢ Ⅎ 𝑗 { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑢 } |
| 11 |
|
nfcsb1v |
⊢ Ⅎ 𝑗 ⦋ 𝑢 / 𝑗 ⦌ 𝐴 |
| 12 |
10 11
|
nfsum |
⊢ Ⅎ 𝑗 Σ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑢 } ⦋ 𝑢 / 𝑗 ⦌ 𝐴 |
| 13 |
8 9 12
|
cbvsum |
⊢ Σ 𝑗 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } Σ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑗 } 𝐴 = Σ 𝑢 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } Σ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑢 } ⦋ 𝑢 / 𝑗 ⦌ 𝐴 |
| 14 |
|
breq2 |
⊢ ( 𝑢 = ( 𝑁 / 𝑣 ) → ( 𝑥 ∥ 𝑢 ↔ 𝑥 ∥ ( 𝑁 / 𝑣 ) ) ) |
| 15 |
14
|
rabbidv |
⊢ ( 𝑢 = ( 𝑁 / 𝑣 ) → { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑢 } = { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑣 ) } ) |
| 16 |
|
csbeq1 |
⊢ ( 𝑢 = ( 𝑁 / 𝑣 ) → ⦋ 𝑢 / 𝑗 ⦌ 𝐴 = ⦋ ( 𝑁 / 𝑣 ) / 𝑗 ⦌ 𝐴 ) |
| 17 |
16
|
adantr |
⊢ ( ( 𝑢 = ( 𝑁 / 𝑣 ) ∧ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑢 } ) → ⦋ 𝑢 / 𝑗 ⦌ 𝐴 = ⦋ ( 𝑁 / 𝑣 ) / 𝑗 ⦌ 𝐴 ) |
| 18 |
15 17
|
sumeq12dv |
⊢ ( 𝑢 = ( 𝑁 / 𝑣 ) → Σ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑢 } ⦋ 𝑢 / 𝑗 ⦌ 𝐴 = Σ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑣 ) } ⦋ ( 𝑁 / 𝑣 ) / 𝑗 ⦌ 𝐴 ) |
| 19 |
|
fzfid |
⊢ ( 𝜑 → ( 1 ... 𝑁 ) ∈ Fin ) |
| 20 |
|
dvdsssfz1 |
⊢ ( 𝑁 ∈ ℕ → { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ⊆ ( 1 ... 𝑁 ) ) |
| 21 |
1 20
|
syl |
⊢ ( 𝜑 → { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ⊆ ( 1 ... 𝑁 ) ) |
| 22 |
19 21
|
ssfid |
⊢ ( 𝜑 → { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ∈ Fin ) |
| 23 |
|
eqid |
⊢ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } = { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } |
| 24 |
|
eqid |
⊢ ( 𝑧 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ↦ ( 𝑁 / 𝑧 ) ) = ( 𝑧 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ↦ ( 𝑁 / 𝑧 ) ) |
| 25 |
23 24
|
dvdsflip |
⊢ ( 𝑁 ∈ ℕ → ( 𝑧 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ↦ ( 𝑁 / 𝑧 ) ) : { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } –1-1-onto→ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ) |
| 26 |
1 25
|
syl |
⊢ ( 𝜑 → ( 𝑧 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ↦ ( 𝑁 / 𝑧 ) ) : { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } –1-1-onto→ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ) |
| 27 |
|
oveq2 |
⊢ ( 𝑧 = 𝑣 → ( 𝑁 / 𝑧 ) = ( 𝑁 / 𝑣 ) ) |
| 28 |
|
ovex |
⊢ ( 𝑁 / 𝑧 ) ∈ V |
| 29 |
27 24 28
|
fvmpt3i |
⊢ ( 𝑣 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } → ( ( 𝑧 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ↦ ( 𝑁 / 𝑧 ) ) ‘ 𝑣 ) = ( 𝑁 / 𝑣 ) ) |
| 30 |
29
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑣 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ) → ( ( 𝑧 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ↦ ( 𝑁 / 𝑧 ) ) ‘ 𝑣 ) = ( 𝑁 / 𝑣 ) ) |
| 31 |
|
fzfid |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ) → ( 1 ... 𝑢 ) ∈ Fin ) |
| 32 |
|
ssrab2 |
⊢ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ⊆ ℕ |
| 33 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ) → 𝑢 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ) |
| 34 |
32 33
|
sselid |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ) → 𝑢 ∈ ℕ ) |
| 35 |
|
dvdsssfz1 |
⊢ ( 𝑢 ∈ ℕ → { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑢 } ⊆ ( 1 ... 𝑢 ) ) |
| 36 |
34 35
|
syl |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ) → { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑢 } ⊆ ( 1 ... 𝑢 ) ) |
| 37 |
31 36
|
ssfid |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ) → { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑢 } ∈ Fin ) |
| 38 |
3
|
ralrimivva |
⊢ ( 𝜑 → ∀ 𝑗 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ∀ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑗 } 𝐴 ∈ ℂ ) |
| 39 |
|
nfv |
⊢ Ⅎ 𝑢 ∀ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑗 } 𝐴 ∈ ℂ |
| 40 |
11
|
nfel1 |
⊢ Ⅎ 𝑗 ⦋ 𝑢 / 𝑗 ⦌ 𝐴 ∈ ℂ |
| 41 |
10 40
|
nfralw |
⊢ Ⅎ 𝑗 ∀ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑢 } ⦋ 𝑢 / 𝑗 ⦌ 𝐴 ∈ ℂ |
| 42 |
6
|
eleq1d |
⊢ ( 𝑗 = 𝑢 → ( 𝐴 ∈ ℂ ↔ ⦋ 𝑢 / 𝑗 ⦌ 𝐴 ∈ ℂ ) ) |
| 43 |
5 42
|
raleqbidv |
⊢ ( 𝑗 = 𝑢 → ( ∀ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑗 } 𝐴 ∈ ℂ ↔ ∀ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑢 } ⦋ 𝑢 / 𝑗 ⦌ 𝐴 ∈ ℂ ) ) |
| 44 |
39 41 43
|
cbvralw |
⊢ ( ∀ 𝑗 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ∀ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑗 } 𝐴 ∈ ℂ ↔ ∀ 𝑢 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ∀ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑢 } ⦋ 𝑢 / 𝑗 ⦌ 𝐴 ∈ ℂ ) |
| 45 |
38 44
|
sylib |
⊢ ( 𝜑 → ∀ 𝑢 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ∀ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑢 } ⦋ 𝑢 / 𝑗 ⦌ 𝐴 ∈ ℂ ) |
| 46 |
45
|
r19.21bi |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ) → ∀ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑢 } ⦋ 𝑢 / 𝑗 ⦌ 𝐴 ∈ ℂ ) |
| 47 |
46
|
r19.21bi |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ) ∧ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑢 } ) → ⦋ 𝑢 / 𝑗 ⦌ 𝐴 ∈ ℂ ) |
| 48 |
37 47
|
fsumcl |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ) → Σ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑢 } ⦋ 𝑢 / 𝑗 ⦌ 𝐴 ∈ ℂ ) |
| 49 |
18 22 26 30 48
|
fsumf1o |
⊢ ( 𝜑 → Σ 𝑢 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } Σ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑢 } ⦋ 𝑢 / 𝑗 ⦌ 𝐴 = Σ 𝑣 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } Σ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑣 ) } ⦋ ( 𝑁 / 𝑣 ) / 𝑗 ⦌ 𝐴 ) |
| 50 |
16
|
eleq1d |
⊢ ( 𝑢 = ( 𝑁 / 𝑣 ) → ( ⦋ 𝑢 / 𝑗 ⦌ 𝐴 ∈ ℂ ↔ ⦋ ( 𝑁 / 𝑣 ) / 𝑗 ⦌ 𝐴 ∈ ℂ ) ) |
| 51 |
15 50
|
raleqbidv |
⊢ ( 𝑢 = ( 𝑁 / 𝑣 ) → ( ∀ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑢 } ⦋ 𝑢 / 𝑗 ⦌ 𝐴 ∈ ℂ ↔ ∀ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑣 ) } ⦋ ( 𝑁 / 𝑣 ) / 𝑗 ⦌ 𝐴 ∈ ℂ ) ) |
| 52 |
45
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑣 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ) → ∀ 𝑢 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ∀ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑢 } ⦋ 𝑢 / 𝑗 ⦌ 𝐴 ∈ ℂ ) |
| 53 |
|
dvdsdivcl |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑣 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ) → ( 𝑁 / 𝑣 ) ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ) |
| 54 |
1 53
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑣 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ) → ( 𝑁 / 𝑣 ) ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ) |
| 55 |
51 52 54
|
rspcdva |
⊢ ( ( 𝜑 ∧ 𝑣 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ) → ∀ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑣 ) } ⦋ ( 𝑁 / 𝑣 ) / 𝑗 ⦌ 𝐴 ∈ ℂ ) |
| 56 |
55
|
r19.21bi |
⊢ ( ( ( 𝜑 ∧ 𝑣 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ) ∧ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑣 ) } ) → ⦋ ( 𝑁 / 𝑣 ) / 𝑗 ⦌ 𝐴 ∈ ℂ ) |
| 57 |
56
|
anasss |
⊢ ( ( 𝜑 ∧ ( 𝑣 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ∧ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑣 ) } ) ) → ⦋ ( 𝑁 / 𝑣 ) / 𝑗 ⦌ 𝐴 ∈ ℂ ) |
| 58 |
1 57
|
fsumdvdsdiag |
⊢ ( 𝜑 → Σ 𝑣 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } Σ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑣 ) } ⦋ ( 𝑁 / 𝑣 ) / 𝑗 ⦌ 𝐴 = Σ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } Σ 𝑣 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑘 ) } ⦋ ( 𝑁 / 𝑣 ) / 𝑗 ⦌ 𝐴 ) |
| 59 |
|
oveq2 |
⊢ ( 𝑣 = ( ( 𝑁 / 𝑘 ) / 𝑚 ) → ( 𝑁 / 𝑣 ) = ( 𝑁 / ( ( 𝑁 / 𝑘 ) / 𝑚 ) ) ) |
| 60 |
59
|
csbeq1d |
⊢ ( 𝑣 = ( ( 𝑁 / 𝑘 ) / 𝑚 ) → ⦋ ( 𝑁 / 𝑣 ) / 𝑗 ⦌ 𝐴 = ⦋ ( 𝑁 / ( ( 𝑁 / 𝑘 ) / 𝑚 ) ) / 𝑗 ⦌ 𝐴 ) |
| 61 |
|
fzfid |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ) → ( 1 ... ( 𝑁 / 𝑘 ) ) ∈ Fin ) |
| 62 |
|
dvdsdivcl |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ) → ( 𝑁 / 𝑘 ) ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ) |
| 63 |
32 62
|
sselid |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ) → ( 𝑁 / 𝑘 ) ∈ ℕ ) |
| 64 |
1 63
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ) → ( 𝑁 / 𝑘 ) ∈ ℕ ) |
| 65 |
|
dvdsssfz1 |
⊢ ( ( 𝑁 / 𝑘 ) ∈ ℕ → { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑘 ) } ⊆ ( 1 ... ( 𝑁 / 𝑘 ) ) ) |
| 66 |
64 65
|
syl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ) → { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑘 ) } ⊆ ( 1 ... ( 𝑁 / 𝑘 ) ) ) |
| 67 |
61 66
|
ssfid |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ) → { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑘 ) } ∈ Fin ) |
| 68 |
|
eqid |
⊢ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑘 ) } = { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑘 ) } |
| 69 |
|
eqid |
⊢ ( 𝑧 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑘 ) } ↦ ( ( 𝑁 / 𝑘 ) / 𝑧 ) ) = ( 𝑧 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑘 ) } ↦ ( ( 𝑁 / 𝑘 ) / 𝑧 ) ) |
| 70 |
68 69
|
dvdsflip |
⊢ ( ( 𝑁 / 𝑘 ) ∈ ℕ → ( 𝑧 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑘 ) } ↦ ( ( 𝑁 / 𝑘 ) / 𝑧 ) ) : { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑘 ) } –1-1-onto→ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑘 ) } ) |
| 71 |
64 70
|
syl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ) → ( 𝑧 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑘 ) } ↦ ( ( 𝑁 / 𝑘 ) / 𝑧 ) ) : { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑘 ) } –1-1-onto→ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑘 ) } ) |
| 72 |
|
oveq2 |
⊢ ( 𝑧 = 𝑚 → ( ( 𝑁 / 𝑘 ) / 𝑧 ) = ( ( 𝑁 / 𝑘 ) / 𝑚 ) ) |
| 73 |
|
ovex |
⊢ ( ( 𝑁 / 𝑘 ) / 𝑧 ) ∈ V |
| 74 |
72 69 73
|
fvmpt3i |
⊢ ( 𝑚 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑘 ) } → ( ( 𝑧 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑘 ) } ↦ ( ( 𝑁 / 𝑘 ) / 𝑧 ) ) ‘ 𝑚 ) = ( ( 𝑁 / 𝑘 ) / 𝑚 ) ) |
| 75 |
74
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ) ∧ 𝑚 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑘 ) } ) → ( ( 𝑧 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑘 ) } ↦ ( ( 𝑁 / 𝑘 ) / 𝑧 ) ) ‘ 𝑚 ) = ( ( 𝑁 / 𝑘 ) / 𝑚 ) ) |
| 76 |
1
|
fsumdvdsdiaglem |
⊢ ( 𝜑 → ( ( 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ∧ 𝑣 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑘 ) } ) → ( 𝑣 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ∧ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑣 ) } ) ) ) |
| 77 |
57
|
ex |
⊢ ( 𝜑 → ( ( 𝑣 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ∧ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑣 ) } ) → ⦋ ( 𝑁 / 𝑣 ) / 𝑗 ⦌ 𝐴 ∈ ℂ ) ) |
| 78 |
76 77
|
syld |
⊢ ( 𝜑 → ( ( 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ∧ 𝑣 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑘 ) } ) → ⦋ ( 𝑁 / 𝑣 ) / 𝑗 ⦌ 𝐴 ∈ ℂ ) ) |
| 79 |
78
|
impl |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ) ∧ 𝑣 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑘 ) } ) → ⦋ ( 𝑁 / 𝑣 ) / 𝑗 ⦌ 𝐴 ∈ ℂ ) |
| 80 |
60 67 71 75 79
|
fsumf1o |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ) → Σ 𝑣 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑘 ) } ⦋ ( 𝑁 / 𝑣 ) / 𝑗 ⦌ 𝐴 = Σ 𝑚 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑘 ) } ⦋ ( 𝑁 / ( ( 𝑁 / 𝑘 ) / 𝑚 ) ) / 𝑗 ⦌ 𝐴 ) |
| 81 |
|
ovexd |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ) ∧ 𝑚 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑘 ) } ) → ( 𝑁 / ( ( 𝑁 / 𝑘 ) / 𝑚 ) ) ∈ V ) |
| 82 |
|
nncn |
⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℂ ) |
| 83 |
|
nnne0 |
⊢ ( 𝑁 ∈ ℕ → 𝑁 ≠ 0 ) |
| 84 |
82 83
|
jca |
⊢ ( 𝑁 ∈ ℕ → ( 𝑁 ∈ ℂ ∧ 𝑁 ≠ 0 ) ) |
| 85 |
1 84
|
syl |
⊢ ( 𝜑 → ( 𝑁 ∈ ℂ ∧ 𝑁 ≠ 0 ) ) |
| 86 |
85
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ) ∧ 𝑚 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑘 ) } ) → ( 𝑁 ∈ ℂ ∧ 𝑁 ≠ 0 ) ) |
| 87 |
86
|
simpld |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ) ∧ 𝑚 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑘 ) } ) → 𝑁 ∈ ℂ ) |
| 88 |
|
elrabi |
⊢ ( 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } → 𝑘 ∈ ℕ ) |
| 89 |
88
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ) → 𝑘 ∈ ℕ ) |
| 90 |
89
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ) ∧ 𝑚 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑘 ) } ) → 𝑘 ∈ ℕ ) |
| 91 |
|
nncn |
⊢ ( 𝑘 ∈ ℕ → 𝑘 ∈ ℂ ) |
| 92 |
|
nnne0 |
⊢ ( 𝑘 ∈ ℕ → 𝑘 ≠ 0 ) |
| 93 |
91 92
|
jca |
⊢ ( 𝑘 ∈ ℕ → ( 𝑘 ∈ ℂ ∧ 𝑘 ≠ 0 ) ) |
| 94 |
90 93
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ) ∧ 𝑚 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑘 ) } ) → ( 𝑘 ∈ ℂ ∧ 𝑘 ≠ 0 ) ) |
| 95 |
|
elrabi |
⊢ ( 𝑚 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑘 ) } → 𝑚 ∈ ℕ ) |
| 96 |
95
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ) ∧ 𝑚 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑘 ) } ) → 𝑚 ∈ ℕ ) |
| 97 |
|
nncn |
⊢ ( 𝑚 ∈ ℕ → 𝑚 ∈ ℂ ) |
| 98 |
|
nnne0 |
⊢ ( 𝑚 ∈ ℕ → 𝑚 ≠ 0 ) |
| 99 |
97 98
|
jca |
⊢ ( 𝑚 ∈ ℕ → ( 𝑚 ∈ ℂ ∧ 𝑚 ≠ 0 ) ) |
| 100 |
96 99
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ) ∧ 𝑚 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑘 ) } ) → ( 𝑚 ∈ ℂ ∧ 𝑚 ≠ 0 ) ) |
| 101 |
|
divdiv1 |
⊢ ( ( 𝑁 ∈ ℂ ∧ ( 𝑘 ∈ ℂ ∧ 𝑘 ≠ 0 ) ∧ ( 𝑚 ∈ ℂ ∧ 𝑚 ≠ 0 ) ) → ( ( 𝑁 / 𝑘 ) / 𝑚 ) = ( 𝑁 / ( 𝑘 · 𝑚 ) ) ) |
| 102 |
87 94 100 101
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ) ∧ 𝑚 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑘 ) } ) → ( ( 𝑁 / 𝑘 ) / 𝑚 ) = ( 𝑁 / ( 𝑘 · 𝑚 ) ) ) |
| 103 |
102
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ) ∧ 𝑚 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑘 ) } ) → ( 𝑁 / ( ( 𝑁 / 𝑘 ) / 𝑚 ) ) = ( 𝑁 / ( 𝑁 / ( 𝑘 · 𝑚 ) ) ) ) |
| 104 |
|
nnmulcl |
⊢ ( ( 𝑘 ∈ ℕ ∧ 𝑚 ∈ ℕ ) → ( 𝑘 · 𝑚 ) ∈ ℕ ) |
| 105 |
89 95 104
|
syl2an |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ) ∧ 𝑚 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑘 ) } ) → ( 𝑘 · 𝑚 ) ∈ ℕ ) |
| 106 |
|
nncn |
⊢ ( ( 𝑘 · 𝑚 ) ∈ ℕ → ( 𝑘 · 𝑚 ) ∈ ℂ ) |
| 107 |
|
nnne0 |
⊢ ( ( 𝑘 · 𝑚 ) ∈ ℕ → ( 𝑘 · 𝑚 ) ≠ 0 ) |
| 108 |
106 107
|
jca |
⊢ ( ( 𝑘 · 𝑚 ) ∈ ℕ → ( ( 𝑘 · 𝑚 ) ∈ ℂ ∧ ( 𝑘 · 𝑚 ) ≠ 0 ) ) |
| 109 |
105 108
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ) ∧ 𝑚 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑘 ) } ) → ( ( 𝑘 · 𝑚 ) ∈ ℂ ∧ ( 𝑘 · 𝑚 ) ≠ 0 ) ) |
| 110 |
|
ddcan |
⊢ ( ( ( 𝑁 ∈ ℂ ∧ 𝑁 ≠ 0 ) ∧ ( ( 𝑘 · 𝑚 ) ∈ ℂ ∧ ( 𝑘 · 𝑚 ) ≠ 0 ) ) → ( 𝑁 / ( 𝑁 / ( 𝑘 · 𝑚 ) ) ) = ( 𝑘 · 𝑚 ) ) |
| 111 |
86 109 110
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ) ∧ 𝑚 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑘 ) } ) → ( 𝑁 / ( 𝑁 / ( 𝑘 · 𝑚 ) ) ) = ( 𝑘 · 𝑚 ) ) |
| 112 |
103 111
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ) ∧ 𝑚 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑘 ) } ) → ( 𝑁 / ( ( 𝑁 / 𝑘 ) / 𝑚 ) ) = ( 𝑘 · 𝑚 ) ) |
| 113 |
112
|
eqeq2d |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ) ∧ 𝑚 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑘 ) } ) → ( 𝑗 = ( 𝑁 / ( ( 𝑁 / 𝑘 ) / 𝑚 ) ) ↔ 𝑗 = ( 𝑘 · 𝑚 ) ) ) |
| 114 |
113
|
biimpa |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ) ∧ 𝑚 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑘 ) } ) ∧ 𝑗 = ( 𝑁 / ( ( 𝑁 / 𝑘 ) / 𝑚 ) ) ) → 𝑗 = ( 𝑘 · 𝑚 ) ) |
| 115 |
114 2
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ) ∧ 𝑚 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑘 ) } ) ∧ 𝑗 = ( 𝑁 / ( ( 𝑁 / 𝑘 ) / 𝑚 ) ) ) → 𝐴 = 𝐵 ) |
| 116 |
81 115
|
csbied |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ) ∧ 𝑚 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑘 ) } ) → ⦋ ( 𝑁 / ( ( 𝑁 / 𝑘 ) / 𝑚 ) ) / 𝑗 ⦌ 𝐴 = 𝐵 ) |
| 117 |
116
|
sumeq2dv |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ) → Σ 𝑚 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑘 ) } ⦋ ( 𝑁 / ( ( 𝑁 / 𝑘 ) / 𝑚 ) ) / 𝑗 ⦌ 𝐴 = Σ 𝑚 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑘 ) } 𝐵 ) |
| 118 |
80 117
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ) → Σ 𝑣 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑘 ) } ⦋ ( 𝑁 / 𝑣 ) / 𝑗 ⦌ 𝐴 = Σ 𝑚 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑘 ) } 𝐵 ) |
| 119 |
118
|
sumeq2dv |
⊢ ( 𝜑 → Σ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } Σ 𝑣 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑘 ) } ⦋ ( 𝑁 / 𝑣 ) / 𝑗 ⦌ 𝐴 = Σ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } Σ 𝑚 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑘 ) } 𝐵 ) |
| 120 |
49 58 119
|
3eqtrd |
⊢ ( 𝜑 → Σ 𝑢 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } Σ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑢 } ⦋ 𝑢 / 𝑗 ⦌ 𝐴 = Σ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } Σ 𝑚 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑘 ) } 𝐵 ) |
| 121 |
13 120
|
eqtrid |
⊢ ( 𝜑 → Σ 𝑗 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } Σ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑗 } 𝐴 = Σ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } Σ 𝑚 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑘 ) } 𝐵 ) |