Step |
Hyp |
Ref |
Expression |
1 |
|
fsumdvdscom.1 |
|
2 |
|
fsumdvdscom.2 |
|
3 |
|
fsumdvdscom.3 |
|
4 |
|
nfcv |
|
5 |
|
nfcv |
|
6 |
|
nfcsb1v |
|
7 |
5 6
|
nfsum |
|
8 |
|
breq2 |
|
9 |
8
|
rabbidv |
|
10 |
|
csbeq1a |
|
11 |
10
|
adantr |
|
12 |
9 11
|
sumeq12dv |
|
13 |
4 7 12
|
cbvsumi |
|
14 |
|
breq2 |
|
15 |
14
|
rabbidv |
|
16 |
|
csbeq1 |
|
17 |
16
|
adantr |
|
18 |
15 17
|
sumeq12dv |
|
19 |
|
fzfid |
|
20 |
|
dvdsssfz1 |
|
21 |
1 20
|
syl |
|
22 |
19 21
|
ssfid |
|
23 |
|
eqid |
|
24 |
|
eqid |
|
25 |
23 24
|
dvdsflip |
|
26 |
1 25
|
syl |
|
27 |
|
oveq2 |
|
28 |
|
ovex |
|
29 |
27 24 28
|
fvmpt3i |
|
30 |
29
|
adantl |
|
31 |
|
fzfid |
|
32 |
|
ssrab2 |
|
33 |
|
simpr |
|
34 |
32 33
|
sselid |
|
35 |
|
dvdsssfz1 |
|
36 |
34 35
|
syl |
|
37 |
31 36
|
ssfid |
|
38 |
3
|
ralrimivva |
|
39 |
|
nfv |
|
40 |
6
|
nfel1 |
|
41 |
5 40
|
nfralw |
|
42 |
10
|
eleq1d |
|
43 |
9 42
|
raleqbidv |
|
44 |
39 41 43
|
cbvralw |
|
45 |
38 44
|
sylib |
|
46 |
45
|
r19.21bi |
|
47 |
46
|
r19.21bi |
|
48 |
37 47
|
fsumcl |
|
49 |
18 22 26 30 48
|
fsumf1o |
|
50 |
16
|
eleq1d |
|
51 |
15 50
|
raleqbidv |
|
52 |
45
|
adantr |
|
53 |
|
dvdsdivcl |
|
54 |
1 53
|
sylan |
|
55 |
51 52 54
|
rspcdva |
|
56 |
55
|
r19.21bi |
|
57 |
56
|
anasss |
|
58 |
1 57
|
fsumdvdsdiag |
|
59 |
|
oveq2 |
|
60 |
59
|
csbeq1d |
|
61 |
|
fzfid |
|
62 |
|
dvdsdivcl |
|
63 |
32 62
|
sselid |
|
64 |
1 63
|
sylan |
|
65 |
|
dvdsssfz1 |
|
66 |
64 65
|
syl |
|
67 |
61 66
|
ssfid |
|
68 |
|
eqid |
|
69 |
|
eqid |
|
70 |
68 69
|
dvdsflip |
|
71 |
64 70
|
syl |
|
72 |
|
oveq2 |
|
73 |
|
ovex |
|
74 |
72 69 73
|
fvmpt3i |
|
75 |
74
|
adantl |
|
76 |
1
|
fsumdvdsdiaglem |
|
77 |
57
|
ex |
|
78 |
76 77
|
syld |
|
79 |
78
|
impl |
|
80 |
60 67 71 75 79
|
fsumf1o |
|
81 |
|
ovexd |
|
82 |
|
nncn |
|
83 |
|
nnne0 |
|
84 |
82 83
|
jca |
|
85 |
1 84
|
syl |
|
86 |
85
|
ad2antrr |
|
87 |
86
|
simpld |
|
88 |
|
elrabi |
|
89 |
88
|
adantl |
|
90 |
89
|
adantr |
|
91 |
|
nncn |
|
92 |
|
nnne0 |
|
93 |
91 92
|
jca |
|
94 |
90 93
|
syl |
|
95 |
|
elrabi |
|
96 |
95
|
adantl |
|
97 |
|
nncn |
|
98 |
|
nnne0 |
|
99 |
97 98
|
jca |
|
100 |
96 99
|
syl |
|
101 |
|
divdiv1 |
|
102 |
87 94 100 101
|
syl3anc |
|
103 |
102
|
oveq2d |
|
104 |
|
nnmulcl |
|
105 |
89 95 104
|
syl2an |
|
106 |
|
nncn |
|
107 |
|
nnne0 |
|
108 |
106 107
|
jca |
|
109 |
105 108
|
syl |
|
110 |
|
ddcan |
|
111 |
86 109 110
|
syl2anc |
|
112 |
103 111
|
eqtrd |
|
113 |
112
|
eqeq2d |
|
114 |
113
|
biimpa |
|
115 |
114 2
|
syl |
|
116 |
81 115
|
csbied |
|
117 |
116
|
sumeq2dv |
|
118 |
80 117
|
eqtrd |
|
119 |
118
|
sumeq2dv |
|
120 |
49 58 119
|
3eqtrd |
|
121 |
13 120
|
eqtrid |
|