| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fsumdvdscom.1 |
|
| 2 |
|
fsumdvdscom.2 |
|
| 3 |
|
fsumdvdscom.3 |
|
| 4 |
|
breq2 |
|
| 5 |
4
|
rabbidv |
|
| 6 |
|
csbeq1a |
|
| 7 |
6
|
adantr |
|
| 8 |
5 7
|
sumeq12dv |
|
| 9 |
|
nfcv |
|
| 10 |
|
nfcv |
|
| 11 |
|
nfcsb1v |
|
| 12 |
10 11
|
nfsum |
|
| 13 |
8 9 12
|
cbvsum |
|
| 14 |
|
breq2 |
|
| 15 |
14
|
rabbidv |
|
| 16 |
|
csbeq1 |
|
| 17 |
16
|
adantr |
|
| 18 |
15 17
|
sumeq12dv |
|
| 19 |
|
fzfid |
|
| 20 |
|
dvdsssfz1 |
|
| 21 |
1 20
|
syl |
|
| 22 |
19 21
|
ssfid |
|
| 23 |
|
eqid |
|
| 24 |
|
eqid |
|
| 25 |
23 24
|
dvdsflip |
|
| 26 |
1 25
|
syl |
|
| 27 |
|
oveq2 |
|
| 28 |
|
ovex |
|
| 29 |
27 24 28
|
fvmpt3i |
|
| 30 |
29
|
adantl |
|
| 31 |
|
fzfid |
|
| 32 |
|
ssrab2 |
|
| 33 |
|
simpr |
|
| 34 |
32 33
|
sselid |
|
| 35 |
|
dvdsssfz1 |
|
| 36 |
34 35
|
syl |
|
| 37 |
31 36
|
ssfid |
|
| 38 |
3
|
ralrimivva |
|
| 39 |
|
nfv |
|
| 40 |
11
|
nfel1 |
|
| 41 |
10 40
|
nfralw |
|
| 42 |
6
|
eleq1d |
|
| 43 |
5 42
|
raleqbidv |
|
| 44 |
39 41 43
|
cbvralw |
|
| 45 |
38 44
|
sylib |
|
| 46 |
45
|
r19.21bi |
|
| 47 |
46
|
r19.21bi |
|
| 48 |
37 47
|
fsumcl |
|
| 49 |
18 22 26 30 48
|
fsumf1o |
|
| 50 |
16
|
eleq1d |
|
| 51 |
15 50
|
raleqbidv |
|
| 52 |
45
|
adantr |
|
| 53 |
|
dvdsdivcl |
|
| 54 |
1 53
|
sylan |
|
| 55 |
51 52 54
|
rspcdva |
|
| 56 |
55
|
r19.21bi |
|
| 57 |
56
|
anasss |
|
| 58 |
1 57
|
fsumdvdsdiag |
|
| 59 |
|
oveq2 |
|
| 60 |
59
|
csbeq1d |
|
| 61 |
|
fzfid |
|
| 62 |
|
dvdsdivcl |
|
| 63 |
32 62
|
sselid |
|
| 64 |
1 63
|
sylan |
|
| 65 |
|
dvdsssfz1 |
|
| 66 |
64 65
|
syl |
|
| 67 |
61 66
|
ssfid |
|
| 68 |
|
eqid |
|
| 69 |
|
eqid |
|
| 70 |
68 69
|
dvdsflip |
|
| 71 |
64 70
|
syl |
|
| 72 |
|
oveq2 |
|
| 73 |
|
ovex |
|
| 74 |
72 69 73
|
fvmpt3i |
|
| 75 |
74
|
adantl |
|
| 76 |
1
|
fsumdvdsdiaglem |
|
| 77 |
57
|
ex |
|
| 78 |
76 77
|
syld |
|
| 79 |
78
|
impl |
|
| 80 |
60 67 71 75 79
|
fsumf1o |
|
| 81 |
|
ovexd |
|
| 82 |
|
nncn |
|
| 83 |
|
nnne0 |
|
| 84 |
82 83
|
jca |
|
| 85 |
1 84
|
syl |
|
| 86 |
85
|
ad2antrr |
|
| 87 |
86
|
simpld |
|
| 88 |
|
elrabi |
|
| 89 |
88
|
adantl |
|
| 90 |
89
|
adantr |
|
| 91 |
|
nncn |
|
| 92 |
|
nnne0 |
|
| 93 |
91 92
|
jca |
|
| 94 |
90 93
|
syl |
|
| 95 |
|
elrabi |
|
| 96 |
95
|
adantl |
|
| 97 |
|
nncn |
|
| 98 |
|
nnne0 |
|
| 99 |
97 98
|
jca |
|
| 100 |
96 99
|
syl |
|
| 101 |
|
divdiv1 |
|
| 102 |
87 94 100 101
|
syl3anc |
|
| 103 |
102
|
oveq2d |
|
| 104 |
|
nnmulcl |
|
| 105 |
89 95 104
|
syl2an |
|
| 106 |
|
nncn |
|
| 107 |
|
nnne0 |
|
| 108 |
106 107
|
jca |
|
| 109 |
105 108
|
syl |
|
| 110 |
|
ddcan |
|
| 111 |
86 109 110
|
syl2anc |
|
| 112 |
103 111
|
eqtrd |
|
| 113 |
112
|
eqeq2d |
|
| 114 |
113
|
biimpa |
|
| 115 |
114 2
|
syl |
|
| 116 |
81 115
|
csbied |
|
| 117 |
116
|
sumeq2dv |
|
| 118 |
80 117
|
eqtrd |
|
| 119 |
118
|
sumeq2dv |
|
| 120 |
49 58 119
|
3eqtrd |
|
| 121 |
13 120
|
eqtrid |
|