Step |
Hyp |
Ref |
Expression |
1 |
|
musumsum.1 |
|- ( m = 1 -> B = C ) |
2 |
|
musumsum.2 |
|- ( ph -> A e. Fin ) |
3 |
|
musumsum.3 |
|- ( ph -> A C_ NN ) |
4 |
|
musumsum.4 |
|- ( ph -> 1 e. A ) |
5 |
|
musumsum.5 |
|- ( ( ph /\ m e. A ) -> B e. CC ) |
6 |
3
|
sselda |
|- ( ( ph /\ m e. A ) -> m e. NN ) |
7 |
|
musum |
|- ( m e. NN -> sum_ k e. { n e. NN | n || m } ( mmu ` k ) = if ( m = 1 , 1 , 0 ) ) |
8 |
6 7
|
syl |
|- ( ( ph /\ m e. A ) -> sum_ k e. { n e. NN | n || m } ( mmu ` k ) = if ( m = 1 , 1 , 0 ) ) |
9 |
8
|
oveq1d |
|- ( ( ph /\ m e. A ) -> ( sum_ k e. { n e. NN | n || m } ( mmu ` k ) x. B ) = ( if ( m = 1 , 1 , 0 ) x. B ) ) |
10 |
|
fzfid |
|- ( ( ph /\ m e. A ) -> ( 1 ... m ) e. Fin ) |
11 |
|
dvdsssfz1 |
|- ( m e. NN -> { n e. NN | n || m } C_ ( 1 ... m ) ) |
12 |
6 11
|
syl |
|- ( ( ph /\ m e. A ) -> { n e. NN | n || m } C_ ( 1 ... m ) ) |
13 |
10 12
|
ssfid |
|- ( ( ph /\ m e. A ) -> { n e. NN | n || m } e. Fin ) |
14 |
|
elrabi |
|- ( k e. { n e. NN | n || m } -> k e. NN ) |
15 |
|
mucl |
|- ( k e. NN -> ( mmu ` k ) e. ZZ ) |
16 |
14 15
|
syl |
|- ( k e. { n e. NN | n || m } -> ( mmu ` k ) e. ZZ ) |
17 |
16
|
zcnd |
|- ( k e. { n e. NN | n || m } -> ( mmu ` k ) e. CC ) |
18 |
17
|
adantl |
|- ( ( ( ph /\ m e. A ) /\ k e. { n e. NN | n || m } ) -> ( mmu ` k ) e. CC ) |
19 |
13 5 18
|
fsummulc1 |
|- ( ( ph /\ m e. A ) -> ( sum_ k e. { n e. NN | n || m } ( mmu ` k ) x. B ) = sum_ k e. { n e. NN | n || m } ( ( mmu ` k ) x. B ) ) |
20 |
|
ovif |
|- ( if ( m = 1 , 1 , 0 ) x. B ) = if ( m = 1 , ( 1 x. B ) , ( 0 x. B ) ) |
21 |
|
velsn |
|- ( m e. { 1 } <-> m = 1 ) |
22 |
21
|
bicomi |
|- ( m = 1 <-> m e. { 1 } ) |
23 |
22
|
a1i |
|- ( B e. CC -> ( m = 1 <-> m e. { 1 } ) ) |
24 |
|
mulid2 |
|- ( B e. CC -> ( 1 x. B ) = B ) |
25 |
|
mul02 |
|- ( B e. CC -> ( 0 x. B ) = 0 ) |
26 |
23 24 25
|
ifbieq12d |
|- ( B e. CC -> if ( m = 1 , ( 1 x. B ) , ( 0 x. B ) ) = if ( m e. { 1 } , B , 0 ) ) |
27 |
5 26
|
syl |
|- ( ( ph /\ m e. A ) -> if ( m = 1 , ( 1 x. B ) , ( 0 x. B ) ) = if ( m e. { 1 } , B , 0 ) ) |
28 |
20 27
|
syl5eq |
|- ( ( ph /\ m e. A ) -> ( if ( m = 1 , 1 , 0 ) x. B ) = if ( m e. { 1 } , B , 0 ) ) |
29 |
9 19 28
|
3eqtr3d |
|- ( ( ph /\ m e. A ) -> sum_ k e. { n e. NN | n || m } ( ( mmu ` k ) x. B ) = if ( m e. { 1 } , B , 0 ) ) |
30 |
29
|
sumeq2dv |
|- ( ph -> sum_ m e. A sum_ k e. { n e. NN | n || m } ( ( mmu ` k ) x. B ) = sum_ m e. A if ( m e. { 1 } , B , 0 ) ) |
31 |
4
|
snssd |
|- ( ph -> { 1 } C_ A ) |
32 |
31
|
sselda |
|- ( ( ph /\ m e. { 1 } ) -> m e. A ) |
33 |
32 5
|
syldan |
|- ( ( ph /\ m e. { 1 } ) -> B e. CC ) |
34 |
33
|
ralrimiva |
|- ( ph -> A. m e. { 1 } B e. CC ) |
35 |
2
|
olcd |
|- ( ph -> ( A C_ ( ZZ>= ` 1 ) \/ A e. Fin ) ) |
36 |
|
sumss2 |
|- ( ( ( { 1 } C_ A /\ A. m e. { 1 } B e. CC ) /\ ( A C_ ( ZZ>= ` 1 ) \/ A e. Fin ) ) -> sum_ m e. { 1 } B = sum_ m e. A if ( m e. { 1 } , B , 0 ) ) |
37 |
31 34 35 36
|
syl21anc |
|- ( ph -> sum_ m e. { 1 } B = sum_ m e. A if ( m e. { 1 } , B , 0 ) ) |
38 |
1
|
eleq1d |
|- ( m = 1 -> ( B e. CC <-> C e. CC ) ) |
39 |
5
|
ralrimiva |
|- ( ph -> A. m e. A B e. CC ) |
40 |
38 39 4
|
rspcdva |
|- ( ph -> C e. CC ) |
41 |
1
|
sumsn |
|- ( ( 1 e. A /\ C e. CC ) -> sum_ m e. { 1 } B = C ) |
42 |
4 40 41
|
syl2anc |
|- ( ph -> sum_ m e. { 1 } B = C ) |
43 |
30 37 42
|
3eqtr2d |
|- ( ph -> sum_ m e. A sum_ k e. { n e. NN | n || m } ( ( mmu ` k ) x. B ) = C ) |