| Step |
Hyp |
Ref |
Expression |
| 1 |
|
df-ne |
⊢ ( ( μ ‘ 𝐴 ) ≠ 0 ↔ ¬ ( μ ‘ 𝐴 ) = 0 ) |
| 2 |
|
ifeqor |
⊢ ( if ( ∃ 𝑝 ∈ ℙ ( 𝑝 ↑ 2 ) ∥ 𝐴 , 0 , ( - 1 ↑ ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴 } ) ) ) = 0 ∨ if ( ∃ 𝑝 ∈ ℙ ( 𝑝 ↑ 2 ) ∥ 𝐴 , 0 , ( - 1 ↑ ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴 } ) ) ) = ( - 1 ↑ ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴 } ) ) ) |
| 3 |
|
muval |
⊢ ( 𝐴 ∈ ℕ → ( μ ‘ 𝐴 ) = if ( ∃ 𝑝 ∈ ℙ ( 𝑝 ↑ 2 ) ∥ 𝐴 , 0 , ( - 1 ↑ ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴 } ) ) ) ) |
| 4 |
3
|
eqeq1d |
⊢ ( 𝐴 ∈ ℕ → ( ( μ ‘ 𝐴 ) = 0 ↔ if ( ∃ 𝑝 ∈ ℙ ( 𝑝 ↑ 2 ) ∥ 𝐴 , 0 , ( - 1 ↑ ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴 } ) ) ) = 0 ) ) |
| 5 |
3
|
eqeq1d |
⊢ ( 𝐴 ∈ ℕ → ( ( μ ‘ 𝐴 ) = ( - 1 ↑ ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴 } ) ) ↔ if ( ∃ 𝑝 ∈ ℙ ( 𝑝 ↑ 2 ) ∥ 𝐴 , 0 , ( - 1 ↑ ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴 } ) ) ) = ( - 1 ↑ ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴 } ) ) ) ) |
| 6 |
4 5
|
orbi12d |
⊢ ( 𝐴 ∈ ℕ → ( ( ( μ ‘ 𝐴 ) = 0 ∨ ( μ ‘ 𝐴 ) = ( - 1 ↑ ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴 } ) ) ) ↔ ( if ( ∃ 𝑝 ∈ ℙ ( 𝑝 ↑ 2 ) ∥ 𝐴 , 0 , ( - 1 ↑ ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴 } ) ) ) = 0 ∨ if ( ∃ 𝑝 ∈ ℙ ( 𝑝 ↑ 2 ) ∥ 𝐴 , 0 , ( - 1 ↑ ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴 } ) ) ) = ( - 1 ↑ ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴 } ) ) ) ) ) |
| 7 |
2 6
|
mpbiri |
⊢ ( 𝐴 ∈ ℕ → ( ( μ ‘ 𝐴 ) = 0 ∨ ( μ ‘ 𝐴 ) = ( - 1 ↑ ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴 } ) ) ) ) |
| 8 |
7
|
ord |
⊢ ( 𝐴 ∈ ℕ → ( ¬ ( μ ‘ 𝐴 ) = 0 → ( μ ‘ 𝐴 ) = ( - 1 ↑ ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴 } ) ) ) ) |
| 9 |
1 8
|
biimtrid |
⊢ ( 𝐴 ∈ ℕ → ( ( μ ‘ 𝐴 ) ≠ 0 → ( μ ‘ 𝐴 ) = ( - 1 ↑ ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴 } ) ) ) ) |
| 10 |
9
|
imp |
⊢ ( ( 𝐴 ∈ ℕ ∧ ( μ ‘ 𝐴 ) ≠ 0 ) → ( μ ‘ 𝐴 ) = ( - 1 ↑ ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴 } ) ) ) |