| Step |
Hyp |
Ref |
Expression |
| 1 |
|
neg1cn |
⊢ - 1 ∈ ℂ |
| 2 |
|
neg1ne0 |
⊢ - 1 ≠ 0 |
| 3 |
|
prmdvdsfi |
⊢ ( 𝐴 ∈ ℕ → { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴 } ∈ Fin ) |
| 4 |
|
hashcl |
⊢ ( { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴 } ∈ Fin → ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴 } ) ∈ ℕ0 ) |
| 5 |
3 4
|
syl |
⊢ ( 𝐴 ∈ ℕ → ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴 } ) ∈ ℕ0 ) |
| 6 |
5
|
nn0zd |
⊢ ( 𝐴 ∈ ℕ → ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴 } ) ∈ ℤ ) |
| 7 |
|
expne0i |
⊢ ( ( - 1 ∈ ℂ ∧ - 1 ≠ 0 ∧ ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴 } ) ∈ ℤ ) → ( - 1 ↑ ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴 } ) ) ≠ 0 ) |
| 8 |
1 2 6 7
|
mp3an12i |
⊢ ( 𝐴 ∈ ℕ → ( - 1 ↑ ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴 } ) ) ≠ 0 ) |
| 9 |
|
iffalse |
⊢ ( ¬ ∃ 𝑝 ∈ ℙ ( 𝑝 ↑ 2 ) ∥ 𝐴 → if ( ∃ 𝑝 ∈ ℙ ( 𝑝 ↑ 2 ) ∥ 𝐴 , 0 , ( - 1 ↑ ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴 } ) ) ) = ( - 1 ↑ ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴 } ) ) ) |
| 10 |
9
|
neeq1d |
⊢ ( ¬ ∃ 𝑝 ∈ ℙ ( 𝑝 ↑ 2 ) ∥ 𝐴 → ( if ( ∃ 𝑝 ∈ ℙ ( 𝑝 ↑ 2 ) ∥ 𝐴 , 0 , ( - 1 ↑ ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴 } ) ) ) ≠ 0 ↔ ( - 1 ↑ ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴 } ) ) ≠ 0 ) ) |
| 11 |
8 10
|
syl5ibrcom |
⊢ ( 𝐴 ∈ ℕ → ( ¬ ∃ 𝑝 ∈ ℙ ( 𝑝 ↑ 2 ) ∥ 𝐴 → if ( ∃ 𝑝 ∈ ℙ ( 𝑝 ↑ 2 ) ∥ 𝐴 , 0 , ( - 1 ↑ ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴 } ) ) ) ≠ 0 ) ) |
| 12 |
|
muval |
⊢ ( 𝐴 ∈ ℕ → ( μ ‘ 𝐴 ) = if ( ∃ 𝑝 ∈ ℙ ( 𝑝 ↑ 2 ) ∥ 𝐴 , 0 , ( - 1 ↑ ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴 } ) ) ) ) |
| 13 |
12
|
neeq1d |
⊢ ( 𝐴 ∈ ℕ → ( ( μ ‘ 𝐴 ) ≠ 0 ↔ if ( ∃ 𝑝 ∈ ℙ ( 𝑝 ↑ 2 ) ∥ 𝐴 , 0 , ( - 1 ↑ ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴 } ) ) ) ≠ 0 ) ) |
| 14 |
11 13
|
sylibrd |
⊢ ( 𝐴 ∈ ℕ → ( ¬ ∃ 𝑝 ∈ ℙ ( 𝑝 ↑ 2 ) ∥ 𝐴 → ( μ ‘ 𝐴 ) ≠ 0 ) ) |
| 15 |
14
|
necon4bd |
⊢ ( 𝐴 ∈ ℕ → ( ( μ ‘ 𝐴 ) = 0 → ∃ 𝑝 ∈ ℙ ( 𝑝 ↑ 2 ) ∥ 𝐴 ) ) |
| 16 |
|
iftrue |
⊢ ( ∃ 𝑝 ∈ ℙ ( 𝑝 ↑ 2 ) ∥ 𝐴 → if ( ∃ 𝑝 ∈ ℙ ( 𝑝 ↑ 2 ) ∥ 𝐴 , 0 , ( - 1 ↑ ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴 } ) ) ) = 0 ) |
| 17 |
12
|
eqeq1d |
⊢ ( 𝐴 ∈ ℕ → ( ( μ ‘ 𝐴 ) = 0 ↔ if ( ∃ 𝑝 ∈ ℙ ( 𝑝 ↑ 2 ) ∥ 𝐴 , 0 , ( - 1 ↑ ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴 } ) ) ) = 0 ) ) |
| 18 |
16 17
|
imbitrrid |
⊢ ( 𝐴 ∈ ℕ → ( ∃ 𝑝 ∈ ℙ ( 𝑝 ↑ 2 ) ∥ 𝐴 → ( μ ‘ 𝐴 ) = 0 ) ) |
| 19 |
15 18
|
impbid |
⊢ ( 𝐴 ∈ ℕ → ( ( μ ‘ 𝐴 ) = 0 ↔ ∃ 𝑝 ∈ ℙ ( 𝑝 ↑ 2 ) ∥ 𝐴 ) ) |