Metamath Proof Explorer


Theorem isnsqf

Description: Two ways to say that a number is not squarefree. (Contributed by Mario Carneiro, 3-Oct-2014)

Ref Expression
Assertion isnsqf A μ A = 0 p p 2 A

Proof

Step Hyp Ref Expression
1 neg1cn 1
2 neg1ne0 1 0
3 prmdvdsfi A p | p A Fin
4 hashcl p | p A Fin p | p A 0
5 3 4 syl A p | p A 0
6 5 nn0zd A p | p A
7 expne0i 1 1 0 p | p A 1 p | p A 0
8 1 2 6 7 mp3an12i A 1 p | p A 0
9 iffalse ¬ p p 2 A if p p 2 A 0 1 p | p A = 1 p | p A
10 9 neeq1d ¬ p p 2 A if p p 2 A 0 1 p | p A 0 1 p | p A 0
11 8 10 syl5ibrcom A ¬ p p 2 A if p p 2 A 0 1 p | p A 0
12 muval A μ A = if p p 2 A 0 1 p | p A
13 12 neeq1d A μ A 0 if p p 2 A 0 1 p | p A 0
14 11 13 sylibrd A ¬ p p 2 A μ A 0
15 14 necon4bd A μ A = 0 p p 2 A
16 iftrue p p 2 A if p p 2 A 0 1 p | p A = 0
17 12 eqeq1d A μ A = 0 if p p 2 A 0 1 p | p A = 0
18 16 17 syl5ibr A p p 2 A μ A = 0
19 15 18 impbid A μ A = 0 p p 2 A