Metamath Proof Explorer


Theorem issqf

Description: Two ways to say that a number is squarefree. (Contributed by Mario Carneiro, 3-Oct-2014)

Ref Expression
Assertion issqf AμA0pppCntA1

Proof

Step Hyp Ref Expression
1 isnsqf AμA=0pp2A
2 1 necon3abid AμA0¬pp2A
3 ralnex p¬p2A¬pp2A
4 1nn0 10
5 pccl pAppCntA0
6 5 ancoms ApppCntA0
7 nn0ltp1le 10ppCntA01<ppCntA1+1ppCntA
8 4 6 7 sylancr Ap1<ppCntA1+1ppCntA
9 1re 1
10 6 nn0red ApppCntA
11 ltnle 1ppCntA1<ppCntA¬ppCntA1
12 9 10 11 sylancr Ap1<ppCntA¬ppCntA1
13 df-2 2=1+1
14 13 breq1i 2ppCntA1+1ppCntA
15 id pp
16 nnz AA
17 2nn0 20
18 pcdvdsb pA202ppCntAp2A
19 17 18 mp3an3 pA2ppCntAp2A
20 15 16 19 syl2anr Ap2ppCntAp2A
21 14 20 bitr3id Ap1+1ppCntAp2A
22 8 12 21 3bitr3d Ap¬ppCntA1p2A
23 22 con1bid Ap¬p2AppCntA1
24 23 ralbidva Ap¬p2ApppCntA1
25 3 24 bitr3id A¬pp2ApppCntA1
26 2 25 bitrd AμA0pppCntA1