Metamath Proof Explorer


Definition df-mu

Description: Define the Möbius function, which is zero for non-squarefree numbers and is -u 1 or 1 for squarefree numbers according as to the number of prime divisors of the number is even or odd, see definition in ApostolNT p. 24. (Contributed by Mario Carneiro, 22-Sep-2014)

Ref Expression
Assertion df-mu μ=xifpp2x01p|px

Detailed syntax breakdown

Step Hyp Ref Expression
0 cmu classμ
1 vx setvarx
2 cn class
3 vp setvarp
4 cprime class
5 3 cv setvarp
6 cexp class^
7 c2 class2
8 5 7 6 co classp2
9 cdvds class
10 1 cv setvarx
11 8 10 9 wbr wffp2x
12 11 3 4 wrex wffpp2x
13 cc0 class0
14 c1 class1
15 14 cneg class-1
16 chash class.
17 5 10 9 wbr wffpx
18 17 3 4 crab classp|px
19 18 16 cfv classp|px
20 15 19 6 co class1p|px
21 12 13 20 cif classifpp2x01p|px
22 1 2 21 cmpt classxifpp2x01p|px
23 0 22 wceq wffμ=xifpp2x01p|px