Database BASIC REAL AND COMPLEX FUNCTIONS Basic number theory Number-theoretical functions df-mu  
				
		 
		
			
		 
		Definition df-mu  
		Description:   Define the Möbius function, which is zero for non-squarefree
       numbers and is -u 1  or 1  for squarefree numbers according as to
       the number of prime divisors of the number is even or odd, see
       definition in ApostolNT  p. 24.  (Contributed by Mario Carneiro , 22-Sep-2014) 
		
			
				
					Ref 
					Expression 
				 
				
					Assertion 
					df-mu   ⊢   μ  =    x  ∈   ℕ   ⟼   if   ∃  p  ∈  ℙ   p   2     ∥  x    0    −   1    p  ∈  ℙ  |  p  ∥  x             
				 
			
		 
		
				Detailed syntax breakdown 
				
					
						Step 
						Hyp 
						Ref 
						Expression 
					 
						
							0 
								
							 
							cmu  class  μ    
						
							1 
								
							 
							vx  setvar  x    
						
							2 
								
							 
							cn  class   ℕ     
						
							3 
								
							 
							vp  setvar  p    
						
							4 
								
							 
							cprime  class  ℙ    
						
							5 
								3 
							 
							cv  setvar  p    
						
							6 
								
							 
							cexp  class  ^    
						
							7 
								
							 
							c2  class   2     
						
							8 
								5  7  6 
							 
							co  class   p   2       
						
							9 
								
							 
							cdvds  class  ∥    
						
							10 
								1 
							 
							cv  setvar  x    
						
							11 
								8  10  9 
							 
							wbr  wff   p   2     ∥  x    
						
							12 
								11  3  4 
							 
							wrex  wff   ∃  p  ∈  ℙ   p   2     ∥  x     
						
							13 
								
							 
							cc0  class   0     
						
							14 
								
							 
							c1  class   1     
						
							15 
								14 
							 
							cneg  class  -1    
						
							16 
								
							 
							chash  class  .    
						
							17 
								5  10  9 
							 
							wbr  wff  p  ∥  x    
						
							18 
								17  3  4 
							 
							crab  class   p  ∈  ℙ  |  p  ∥  x     
						
							19 
								18  16 
							 
							cfv  class   p  ∈  ℙ  |  p  ∥  x     
						
							20 
								15  19  6 
							 
							co  class   −   1    p  ∈  ℙ  |  p  ∥  x      
						
							21 
								12  13  20 
							 
							cif  class   if   ∃  p  ∈  ℙ   p   2     ∥  x    0    −   1    p  ∈  ℙ  |  p  ∥  x       
						
							22 
								1  2  21 
							 
							cmpt  class    x  ∈   ℕ   ⟼   if   ∃  p  ∈  ℙ   p   2     ∥  x    0    −   1    p  ∈  ℙ  |  p  ∥  x          
						
							23 
								0  22 
							 
							wceq  wff   μ  =    x  ∈   ℕ   ⟼   if   ∃  p  ∈  ℙ   p   2     ∥  x    0    −   1    p  ∈  ℙ  |  p  ∥  x