Metamath Proof Explorer


Definition df-sgm

Description: Define the sum of positive divisors function ( x sigma n ) , which is the sum of the xth powers of the positive integer divisors of n, see definition in ApostolNT p. 38. For x = 0 , ( x sigma n ) counts the number of divisors of n , i.e. ( 0 sigma n ) isthe divisor function, see remark in ApostolNT p. 38. (Contributed by Mario Carneiro, 22-Sep-2014)

Ref Expression
Assertion df-sgm σ=x,nkp|pnkx

Detailed syntax breakdown

Step Hyp Ref Expression
0 csgm classσ
1 vx setvarx
2 cc class
3 vn setvarn
4 cn class
5 vk setvark
6 vp setvarp
7 6 cv setvarp
8 cdvds class
9 3 cv setvarn
10 7 9 8 wbr wffpn
11 10 6 4 crab classp|pn
12 5 cv setvark
13 ccxp classc
14 1 cv setvarx
15 12 14 13 co classkx
16 11 15 5 csu classkp|pnkx
17 1 3 2 4 16 cmpo classx,nkp|pnkx
18 0 17 wceq wffσ=x,nkp|pnkx