| Step |
Hyp |
Ref |
Expression |
| 1 |
|
efnnfsumcl.1 |
|
| 2 |
|
efnnfsumcl.2 |
|
| 3 |
|
efnnfsumcl.3 |
|
| 4 |
|
ssrab2 |
|
| 5 |
|
ax-resscn |
|
| 6 |
4 5
|
sstri |
|
| 7 |
6
|
a1i |
|
| 8 |
|
fveq2 |
|
| 9 |
8
|
eleq1d |
|
| 10 |
9
|
elrab |
|
| 11 |
|
fveq2 |
|
| 12 |
11
|
eleq1d |
|
| 13 |
12
|
elrab |
|
| 14 |
|
fveq2 |
|
| 15 |
14
|
eleq1d |
|
| 16 |
|
simpll |
|
| 17 |
|
simprl |
|
| 18 |
16 17
|
readdcld |
|
| 19 |
16
|
recnd |
|
| 20 |
17
|
recnd |
|
| 21 |
|
efadd |
|
| 22 |
19 20 21
|
syl2anc |
|
| 23 |
|
nnmulcl |
|
| 24 |
23
|
ad2ant2l |
|
| 25 |
22 24
|
eqeltrd |
|
| 26 |
15 18 25
|
elrabd |
|
| 27 |
10 13 26
|
syl2anb |
|
| 28 |
27
|
adantl |
|
| 29 |
|
fveq2 |
|
| 30 |
29
|
eleq1d |
|
| 31 |
30 2 3
|
elrabd |
|
| 32 |
|
0re |
|
| 33 |
|
1nn |
|
| 34 |
|
fveq2 |
|
| 35 |
|
ef0 |
|
| 36 |
34 35
|
eqtrdi |
|
| 37 |
36
|
eleq1d |
|
| 38 |
37
|
elrab |
|
| 39 |
32 33 38
|
mpbir2an |
|
| 40 |
39
|
a1i |
|
| 41 |
7 28 1 31 40
|
fsumcllem |
|
| 42 |
|
fveq2 |
|
| 43 |
42
|
eleq1d |
|
| 44 |
43
|
elrab |
|
| 45 |
44
|
simprbi |
|
| 46 |
41 45
|
syl |
|