| Step |
Hyp |
Ref |
Expression |
| 1 |
|
efnnfsumcl.1 |
⊢ ( 𝜑 → 𝐴 ∈ Fin ) |
| 2 |
|
efnnfsumcl.2 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ℝ ) |
| 3 |
|
efnnfsumcl.3 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ( exp ‘ 𝐵 ) ∈ ℕ ) |
| 4 |
|
ssrab2 |
⊢ { 𝑥 ∈ ℝ ∣ ( exp ‘ 𝑥 ) ∈ ℕ } ⊆ ℝ |
| 5 |
|
ax-resscn |
⊢ ℝ ⊆ ℂ |
| 6 |
4 5
|
sstri |
⊢ { 𝑥 ∈ ℝ ∣ ( exp ‘ 𝑥 ) ∈ ℕ } ⊆ ℂ |
| 7 |
6
|
a1i |
⊢ ( 𝜑 → { 𝑥 ∈ ℝ ∣ ( exp ‘ 𝑥 ) ∈ ℕ } ⊆ ℂ ) |
| 8 |
|
fveq2 |
⊢ ( 𝑥 = 𝑦 → ( exp ‘ 𝑥 ) = ( exp ‘ 𝑦 ) ) |
| 9 |
8
|
eleq1d |
⊢ ( 𝑥 = 𝑦 → ( ( exp ‘ 𝑥 ) ∈ ℕ ↔ ( exp ‘ 𝑦 ) ∈ ℕ ) ) |
| 10 |
9
|
elrab |
⊢ ( 𝑦 ∈ { 𝑥 ∈ ℝ ∣ ( exp ‘ 𝑥 ) ∈ ℕ } ↔ ( 𝑦 ∈ ℝ ∧ ( exp ‘ 𝑦 ) ∈ ℕ ) ) |
| 11 |
|
fveq2 |
⊢ ( 𝑥 = 𝑧 → ( exp ‘ 𝑥 ) = ( exp ‘ 𝑧 ) ) |
| 12 |
11
|
eleq1d |
⊢ ( 𝑥 = 𝑧 → ( ( exp ‘ 𝑥 ) ∈ ℕ ↔ ( exp ‘ 𝑧 ) ∈ ℕ ) ) |
| 13 |
12
|
elrab |
⊢ ( 𝑧 ∈ { 𝑥 ∈ ℝ ∣ ( exp ‘ 𝑥 ) ∈ ℕ } ↔ ( 𝑧 ∈ ℝ ∧ ( exp ‘ 𝑧 ) ∈ ℕ ) ) |
| 14 |
|
fveq2 |
⊢ ( 𝑥 = ( 𝑦 + 𝑧 ) → ( exp ‘ 𝑥 ) = ( exp ‘ ( 𝑦 + 𝑧 ) ) ) |
| 15 |
14
|
eleq1d |
⊢ ( 𝑥 = ( 𝑦 + 𝑧 ) → ( ( exp ‘ 𝑥 ) ∈ ℕ ↔ ( exp ‘ ( 𝑦 + 𝑧 ) ) ∈ ℕ ) ) |
| 16 |
|
simpll |
⊢ ( ( ( 𝑦 ∈ ℝ ∧ ( exp ‘ 𝑦 ) ∈ ℕ ) ∧ ( 𝑧 ∈ ℝ ∧ ( exp ‘ 𝑧 ) ∈ ℕ ) ) → 𝑦 ∈ ℝ ) |
| 17 |
|
simprl |
⊢ ( ( ( 𝑦 ∈ ℝ ∧ ( exp ‘ 𝑦 ) ∈ ℕ ) ∧ ( 𝑧 ∈ ℝ ∧ ( exp ‘ 𝑧 ) ∈ ℕ ) ) → 𝑧 ∈ ℝ ) |
| 18 |
16 17
|
readdcld |
⊢ ( ( ( 𝑦 ∈ ℝ ∧ ( exp ‘ 𝑦 ) ∈ ℕ ) ∧ ( 𝑧 ∈ ℝ ∧ ( exp ‘ 𝑧 ) ∈ ℕ ) ) → ( 𝑦 + 𝑧 ) ∈ ℝ ) |
| 19 |
16
|
recnd |
⊢ ( ( ( 𝑦 ∈ ℝ ∧ ( exp ‘ 𝑦 ) ∈ ℕ ) ∧ ( 𝑧 ∈ ℝ ∧ ( exp ‘ 𝑧 ) ∈ ℕ ) ) → 𝑦 ∈ ℂ ) |
| 20 |
17
|
recnd |
⊢ ( ( ( 𝑦 ∈ ℝ ∧ ( exp ‘ 𝑦 ) ∈ ℕ ) ∧ ( 𝑧 ∈ ℝ ∧ ( exp ‘ 𝑧 ) ∈ ℕ ) ) → 𝑧 ∈ ℂ ) |
| 21 |
|
efadd |
⊢ ( ( 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ) → ( exp ‘ ( 𝑦 + 𝑧 ) ) = ( ( exp ‘ 𝑦 ) · ( exp ‘ 𝑧 ) ) ) |
| 22 |
19 20 21
|
syl2anc |
⊢ ( ( ( 𝑦 ∈ ℝ ∧ ( exp ‘ 𝑦 ) ∈ ℕ ) ∧ ( 𝑧 ∈ ℝ ∧ ( exp ‘ 𝑧 ) ∈ ℕ ) ) → ( exp ‘ ( 𝑦 + 𝑧 ) ) = ( ( exp ‘ 𝑦 ) · ( exp ‘ 𝑧 ) ) ) |
| 23 |
|
nnmulcl |
⊢ ( ( ( exp ‘ 𝑦 ) ∈ ℕ ∧ ( exp ‘ 𝑧 ) ∈ ℕ ) → ( ( exp ‘ 𝑦 ) · ( exp ‘ 𝑧 ) ) ∈ ℕ ) |
| 24 |
23
|
ad2ant2l |
⊢ ( ( ( 𝑦 ∈ ℝ ∧ ( exp ‘ 𝑦 ) ∈ ℕ ) ∧ ( 𝑧 ∈ ℝ ∧ ( exp ‘ 𝑧 ) ∈ ℕ ) ) → ( ( exp ‘ 𝑦 ) · ( exp ‘ 𝑧 ) ) ∈ ℕ ) |
| 25 |
22 24
|
eqeltrd |
⊢ ( ( ( 𝑦 ∈ ℝ ∧ ( exp ‘ 𝑦 ) ∈ ℕ ) ∧ ( 𝑧 ∈ ℝ ∧ ( exp ‘ 𝑧 ) ∈ ℕ ) ) → ( exp ‘ ( 𝑦 + 𝑧 ) ) ∈ ℕ ) |
| 26 |
15 18 25
|
elrabd |
⊢ ( ( ( 𝑦 ∈ ℝ ∧ ( exp ‘ 𝑦 ) ∈ ℕ ) ∧ ( 𝑧 ∈ ℝ ∧ ( exp ‘ 𝑧 ) ∈ ℕ ) ) → ( 𝑦 + 𝑧 ) ∈ { 𝑥 ∈ ℝ ∣ ( exp ‘ 𝑥 ) ∈ ℕ } ) |
| 27 |
10 13 26
|
syl2anb |
⊢ ( ( 𝑦 ∈ { 𝑥 ∈ ℝ ∣ ( exp ‘ 𝑥 ) ∈ ℕ } ∧ 𝑧 ∈ { 𝑥 ∈ ℝ ∣ ( exp ‘ 𝑥 ) ∈ ℕ } ) → ( 𝑦 + 𝑧 ) ∈ { 𝑥 ∈ ℝ ∣ ( exp ‘ 𝑥 ) ∈ ℕ } ) |
| 28 |
27
|
adantl |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ { 𝑥 ∈ ℝ ∣ ( exp ‘ 𝑥 ) ∈ ℕ } ∧ 𝑧 ∈ { 𝑥 ∈ ℝ ∣ ( exp ‘ 𝑥 ) ∈ ℕ } ) ) → ( 𝑦 + 𝑧 ) ∈ { 𝑥 ∈ ℝ ∣ ( exp ‘ 𝑥 ) ∈ ℕ } ) |
| 29 |
|
fveq2 |
⊢ ( 𝑥 = 𝐵 → ( exp ‘ 𝑥 ) = ( exp ‘ 𝐵 ) ) |
| 30 |
29
|
eleq1d |
⊢ ( 𝑥 = 𝐵 → ( ( exp ‘ 𝑥 ) ∈ ℕ ↔ ( exp ‘ 𝐵 ) ∈ ℕ ) ) |
| 31 |
30 2 3
|
elrabd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ { 𝑥 ∈ ℝ ∣ ( exp ‘ 𝑥 ) ∈ ℕ } ) |
| 32 |
|
0re |
⊢ 0 ∈ ℝ |
| 33 |
|
1nn |
⊢ 1 ∈ ℕ |
| 34 |
|
fveq2 |
⊢ ( 𝑥 = 0 → ( exp ‘ 𝑥 ) = ( exp ‘ 0 ) ) |
| 35 |
|
ef0 |
⊢ ( exp ‘ 0 ) = 1 |
| 36 |
34 35
|
eqtrdi |
⊢ ( 𝑥 = 0 → ( exp ‘ 𝑥 ) = 1 ) |
| 37 |
36
|
eleq1d |
⊢ ( 𝑥 = 0 → ( ( exp ‘ 𝑥 ) ∈ ℕ ↔ 1 ∈ ℕ ) ) |
| 38 |
37
|
elrab |
⊢ ( 0 ∈ { 𝑥 ∈ ℝ ∣ ( exp ‘ 𝑥 ) ∈ ℕ } ↔ ( 0 ∈ ℝ ∧ 1 ∈ ℕ ) ) |
| 39 |
32 33 38
|
mpbir2an |
⊢ 0 ∈ { 𝑥 ∈ ℝ ∣ ( exp ‘ 𝑥 ) ∈ ℕ } |
| 40 |
39
|
a1i |
⊢ ( 𝜑 → 0 ∈ { 𝑥 ∈ ℝ ∣ ( exp ‘ 𝑥 ) ∈ ℕ } ) |
| 41 |
7 28 1 31 40
|
fsumcllem |
⊢ ( 𝜑 → Σ 𝑘 ∈ 𝐴 𝐵 ∈ { 𝑥 ∈ ℝ ∣ ( exp ‘ 𝑥 ) ∈ ℕ } ) |
| 42 |
|
fveq2 |
⊢ ( 𝑥 = Σ 𝑘 ∈ 𝐴 𝐵 → ( exp ‘ 𝑥 ) = ( exp ‘ Σ 𝑘 ∈ 𝐴 𝐵 ) ) |
| 43 |
42
|
eleq1d |
⊢ ( 𝑥 = Σ 𝑘 ∈ 𝐴 𝐵 → ( ( exp ‘ 𝑥 ) ∈ ℕ ↔ ( exp ‘ Σ 𝑘 ∈ 𝐴 𝐵 ) ∈ ℕ ) ) |
| 44 |
43
|
elrab |
⊢ ( Σ 𝑘 ∈ 𝐴 𝐵 ∈ { 𝑥 ∈ ℝ ∣ ( exp ‘ 𝑥 ) ∈ ℕ } ↔ ( Σ 𝑘 ∈ 𝐴 𝐵 ∈ ℝ ∧ ( exp ‘ Σ 𝑘 ∈ 𝐴 𝐵 ) ∈ ℕ ) ) |
| 45 |
44
|
simprbi |
⊢ ( Σ 𝑘 ∈ 𝐴 𝐵 ∈ { 𝑥 ∈ ℝ ∣ ( exp ‘ 𝑥 ) ∈ ℕ } → ( exp ‘ Σ 𝑘 ∈ 𝐴 𝐵 ) ∈ ℕ ) |
| 46 |
41 45
|
syl |
⊢ ( 𝜑 → ( exp ‘ Σ 𝑘 ∈ 𝐴 𝐵 ) ∈ ℕ ) |