| Step |
Hyp |
Ref |
Expression |
| 1 |
|
efnnfsumcl.1 |
|- ( ph -> A e. Fin ) |
| 2 |
|
efnnfsumcl.2 |
|- ( ( ph /\ k e. A ) -> B e. RR ) |
| 3 |
|
efnnfsumcl.3 |
|- ( ( ph /\ k e. A ) -> ( exp ` B ) e. NN ) |
| 4 |
|
ssrab2 |
|- { x e. RR | ( exp ` x ) e. NN } C_ RR |
| 5 |
|
ax-resscn |
|- RR C_ CC |
| 6 |
4 5
|
sstri |
|- { x e. RR | ( exp ` x ) e. NN } C_ CC |
| 7 |
6
|
a1i |
|- ( ph -> { x e. RR | ( exp ` x ) e. NN } C_ CC ) |
| 8 |
|
fveq2 |
|- ( x = y -> ( exp ` x ) = ( exp ` y ) ) |
| 9 |
8
|
eleq1d |
|- ( x = y -> ( ( exp ` x ) e. NN <-> ( exp ` y ) e. NN ) ) |
| 10 |
9
|
elrab |
|- ( y e. { x e. RR | ( exp ` x ) e. NN } <-> ( y e. RR /\ ( exp ` y ) e. NN ) ) |
| 11 |
|
fveq2 |
|- ( x = z -> ( exp ` x ) = ( exp ` z ) ) |
| 12 |
11
|
eleq1d |
|- ( x = z -> ( ( exp ` x ) e. NN <-> ( exp ` z ) e. NN ) ) |
| 13 |
12
|
elrab |
|- ( z e. { x e. RR | ( exp ` x ) e. NN } <-> ( z e. RR /\ ( exp ` z ) e. NN ) ) |
| 14 |
|
fveq2 |
|- ( x = ( y + z ) -> ( exp ` x ) = ( exp ` ( y + z ) ) ) |
| 15 |
14
|
eleq1d |
|- ( x = ( y + z ) -> ( ( exp ` x ) e. NN <-> ( exp ` ( y + z ) ) e. NN ) ) |
| 16 |
|
simpll |
|- ( ( ( y e. RR /\ ( exp ` y ) e. NN ) /\ ( z e. RR /\ ( exp ` z ) e. NN ) ) -> y e. RR ) |
| 17 |
|
simprl |
|- ( ( ( y e. RR /\ ( exp ` y ) e. NN ) /\ ( z e. RR /\ ( exp ` z ) e. NN ) ) -> z e. RR ) |
| 18 |
16 17
|
readdcld |
|- ( ( ( y e. RR /\ ( exp ` y ) e. NN ) /\ ( z e. RR /\ ( exp ` z ) e. NN ) ) -> ( y + z ) e. RR ) |
| 19 |
16
|
recnd |
|- ( ( ( y e. RR /\ ( exp ` y ) e. NN ) /\ ( z e. RR /\ ( exp ` z ) e. NN ) ) -> y e. CC ) |
| 20 |
17
|
recnd |
|- ( ( ( y e. RR /\ ( exp ` y ) e. NN ) /\ ( z e. RR /\ ( exp ` z ) e. NN ) ) -> z e. CC ) |
| 21 |
|
efadd |
|- ( ( y e. CC /\ z e. CC ) -> ( exp ` ( y + z ) ) = ( ( exp ` y ) x. ( exp ` z ) ) ) |
| 22 |
19 20 21
|
syl2anc |
|- ( ( ( y e. RR /\ ( exp ` y ) e. NN ) /\ ( z e. RR /\ ( exp ` z ) e. NN ) ) -> ( exp ` ( y + z ) ) = ( ( exp ` y ) x. ( exp ` z ) ) ) |
| 23 |
|
nnmulcl |
|- ( ( ( exp ` y ) e. NN /\ ( exp ` z ) e. NN ) -> ( ( exp ` y ) x. ( exp ` z ) ) e. NN ) |
| 24 |
23
|
ad2ant2l |
|- ( ( ( y e. RR /\ ( exp ` y ) e. NN ) /\ ( z e. RR /\ ( exp ` z ) e. NN ) ) -> ( ( exp ` y ) x. ( exp ` z ) ) e. NN ) |
| 25 |
22 24
|
eqeltrd |
|- ( ( ( y e. RR /\ ( exp ` y ) e. NN ) /\ ( z e. RR /\ ( exp ` z ) e. NN ) ) -> ( exp ` ( y + z ) ) e. NN ) |
| 26 |
15 18 25
|
elrabd |
|- ( ( ( y e. RR /\ ( exp ` y ) e. NN ) /\ ( z e. RR /\ ( exp ` z ) e. NN ) ) -> ( y + z ) e. { x e. RR | ( exp ` x ) e. NN } ) |
| 27 |
10 13 26
|
syl2anb |
|- ( ( y e. { x e. RR | ( exp ` x ) e. NN } /\ z e. { x e. RR | ( exp ` x ) e. NN } ) -> ( y + z ) e. { x e. RR | ( exp ` x ) e. NN } ) |
| 28 |
27
|
adantl |
|- ( ( ph /\ ( y e. { x e. RR | ( exp ` x ) e. NN } /\ z e. { x e. RR | ( exp ` x ) e. NN } ) ) -> ( y + z ) e. { x e. RR | ( exp ` x ) e. NN } ) |
| 29 |
|
fveq2 |
|- ( x = B -> ( exp ` x ) = ( exp ` B ) ) |
| 30 |
29
|
eleq1d |
|- ( x = B -> ( ( exp ` x ) e. NN <-> ( exp ` B ) e. NN ) ) |
| 31 |
30 2 3
|
elrabd |
|- ( ( ph /\ k e. A ) -> B e. { x e. RR | ( exp ` x ) e. NN } ) |
| 32 |
|
0re |
|- 0 e. RR |
| 33 |
|
1nn |
|- 1 e. NN |
| 34 |
|
fveq2 |
|- ( x = 0 -> ( exp ` x ) = ( exp ` 0 ) ) |
| 35 |
|
ef0 |
|- ( exp ` 0 ) = 1 |
| 36 |
34 35
|
eqtrdi |
|- ( x = 0 -> ( exp ` x ) = 1 ) |
| 37 |
36
|
eleq1d |
|- ( x = 0 -> ( ( exp ` x ) e. NN <-> 1 e. NN ) ) |
| 38 |
37
|
elrab |
|- ( 0 e. { x e. RR | ( exp ` x ) e. NN } <-> ( 0 e. RR /\ 1 e. NN ) ) |
| 39 |
32 33 38
|
mpbir2an |
|- 0 e. { x e. RR | ( exp ` x ) e. NN } |
| 40 |
39
|
a1i |
|- ( ph -> 0 e. { x e. RR | ( exp ` x ) e. NN } ) |
| 41 |
7 28 1 31 40
|
fsumcllem |
|- ( ph -> sum_ k e. A B e. { x e. RR | ( exp ` x ) e. NN } ) |
| 42 |
|
fveq2 |
|- ( x = sum_ k e. A B -> ( exp ` x ) = ( exp ` sum_ k e. A B ) ) |
| 43 |
42
|
eleq1d |
|- ( x = sum_ k e. A B -> ( ( exp ` x ) e. NN <-> ( exp ` sum_ k e. A B ) e. NN ) ) |
| 44 |
43
|
elrab |
|- ( sum_ k e. A B e. { x e. RR | ( exp ` x ) e. NN } <-> ( sum_ k e. A B e. RR /\ ( exp ` sum_ k e. A B ) e. NN ) ) |
| 45 |
44
|
simprbi |
|- ( sum_ k e. A B e. { x e. RR | ( exp ` x ) e. NN } -> ( exp ` sum_ k e. A B ) e. NN ) |
| 46 |
41 45
|
syl |
|- ( ph -> ( exp ` sum_ k e. A B ) e. NN ) |