| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simpr |
|- ( ( A e. RR /\ x e. ( ( 0 [,] A ) i^i Prime ) ) -> x e. ( ( 0 [,] A ) i^i Prime ) ) |
| 2 |
1
|
elin2d |
|- ( ( A e. RR /\ x e. ( ( 0 [,] A ) i^i Prime ) ) -> x e. Prime ) |
| 3 |
|
prmuz2 |
|- ( x e. Prime -> x e. ( ZZ>= ` 2 ) ) |
| 4 |
2 3
|
syl |
|- ( ( A e. RR /\ x e. ( ( 0 [,] A ) i^i Prime ) ) -> x e. ( ZZ>= ` 2 ) ) |
| 5 |
|
prmz |
|- ( x e. Prime -> x e. ZZ ) |
| 6 |
2 5
|
syl |
|- ( ( A e. RR /\ x e. ( ( 0 [,] A ) i^i Prime ) ) -> x e. ZZ ) |
| 7 |
|
flcl |
|- ( A e. RR -> ( |_ ` A ) e. ZZ ) |
| 8 |
7
|
adantr |
|- ( ( A e. RR /\ x e. ( ( 0 [,] A ) i^i Prime ) ) -> ( |_ ` A ) e. ZZ ) |
| 9 |
1
|
elin1d |
|- ( ( A e. RR /\ x e. ( ( 0 [,] A ) i^i Prime ) ) -> x e. ( 0 [,] A ) ) |
| 10 |
|
0re |
|- 0 e. RR |
| 11 |
|
simpl |
|- ( ( A e. RR /\ x e. ( ( 0 [,] A ) i^i Prime ) ) -> A e. RR ) |
| 12 |
|
elicc2 |
|- ( ( 0 e. RR /\ A e. RR ) -> ( x e. ( 0 [,] A ) <-> ( x e. RR /\ 0 <_ x /\ x <_ A ) ) ) |
| 13 |
10 11 12
|
sylancr |
|- ( ( A e. RR /\ x e. ( ( 0 [,] A ) i^i Prime ) ) -> ( x e. ( 0 [,] A ) <-> ( x e. RR /\ 0 <_ x /\ x <_ A ) ) ) |
| 14 |
9 13
|
mpbid |
|- ( ( A e. RR /\ x e. ( ( 0 [,] A ) i^i Prime ) ) -> ( x e. RR /\ 0 <_ x /\ x <_ A ) ) |
| 15 |
14
|
simp3d |
|- ( ( A e. RR /\ x e. ( ( 0 [,] A ) i^i Prime ) ) -> x <_ A ) |
| 16 |
|
flge |
|- ( ( A e. RR /\ x e. ZZ ) -> ( x <_ A <-> x <_ ( |_ ` A ) ) ) |
| 17 |
6 16
|
syldan |
|- ( ( A e. RR /\ x e. ( ( 0 [,] A ) i^i Prime ) ) -> ( x <_ A <-> x <_ ( |_ ` A ) ) ) |
| 18 |
15 17
|
mpbid |
|- ( ( A e. RR /\ x e. ( ( 0 [,] A ) i^i Prime ) ) -> x <_ ( |_ ` A ) ) |
| 19 |
|
eluz2 |
|- ( ( |_ ` A ) e. ( ZZ>= ` x ) <-> ( x e. ZZ /\ ( |_ ` A ) e. ZZ /\ x <_ ( |_ ` A ) ) ) |
| 20 |
6 8 18 19
|
syl3anbrc |
|- ( ( A e. RR /\ x e. ( ( 0 [,] A ) i^i Prime ) ) -> ( |_ ` A ) e. ( ZZ>= ` x ) ) |
| 21 |
|
elfzuzb |
|- ( x e. ( 2 ... ( |_ ` A ) ) <-> ( x e. ( ZZ>= ` 2 ) /\ ( |_ ` A ) e. ( ZZ>= ` x ) ) ) |
| 22 |
4 20 21
|
sylanbrc |
|- ( ( A e. RR /\ x e. ( ( 0 [,] A ) i^i Prime ) ) -> x e. ( 2 ... ( |_ ` A ) ) ) |
| 23 |
22 2
|
elind |
|- ( ( A e. RR /\ x e. ( ( 0 [,] A ) i^i Prime ) ) -> x e. ( ( 2 ... ( |_ ` A ) ) i^i Prime ) ) |
| 24 |
23
|
ex |
|- ( A e. RR -> ( x e. ( ( 0 [,] A ) i^i Prime ) -> x e. ( ( 2 ... ( |_ ` A ) ) i^i Prime ) ) ) |
| 25 |
24
|
ssrdv |
|- ( A e. RR -> ( ( 0 [,] A ) i^i Prime ) C_ ( ( 2 ... ( |_ ` A ) ) i^i Prime ) ) |
| 26 |
|
2z |
|- 2 e. ZZ |
| 27 |
|
fzval2 |
|- ( ( 2 e. ZZ /\ ( |_ ` A ) e. ZZ ) -> ( 2 ... ( |_ ` A ) ) = ( ( 2 [,] ( |_ ` A ) ) i^i ZZ ) ) |
| 28 |
26 7 27
|
sylancr |
|- ( A e. RR -> ( 2 ... ( |_ ` A ) ) = ( ( 2 [,] ( |_ ` A ) ) i^i ZZ ) ) |
| 29 |
|
inss1 |
|- ( ( 2 [,] ( |_ ` A ) ) i^i ZZ ) C_ ( 2 [,] ( |_ ` A ) ) |
| 30 |
10
|
a1i |
|- ( A e. RR -> 0 e. RR ) |
| 31 |
|
id |
|- ( A e. RR -> A e. RR ) |
| 32 |
|
0le2 |
|- 0 <_ 2 |
| 33 |
32
|
a1i |
|- ( A e. RR -> 0 <_ 2 ) |
| 34 |
|
flle |
|- ( A e. RR -> ( |_ ` A ) <_ A ) |
| 35 |
|
iccss |
|- ( ( ( 0 e. RR /\ A e. RR ) /\ ( 0 <_ 2 /\ ( |_ ` A ) <_ A ) ) -> ( 2 [,] ( |_ ` A ) ) C_ ( 0 [,] A ) ) |
| 36 |
30 31 33 34 35
|
syl22anc |
|- ( A e. RR -> ( 2 [,] ( |_ ` A ) ) C_ ( 0 [,] A ) ) |
| 37 |
29 36
|
sstrid |
|- ( A e. RR -> ( ( 2 [,] ( |_ ` A ) ) i^i ZZ ) C_ ( 0 [,] A ) ) |
| 38 |
28 37
|
eqsstrd |
|- ( A e. RR -> ( 2 ... ( |_ ` A ) ) C_ ( 0 [,] A ) ) |
| 39 |
38
|
ssrind |
|- ( A e. RR -> ( ( 2 ... ( |_ ` A ) ) i^i Prime ) C_ ( ( 0 [,] A ) i^i Prime ) ) |
| 40 |
25 39
|
eqssd |
|- ( A e. RR -> ( ( 0 [,] A ) i^i Prime ) = ( ( 2 ... ( |_ ` A ) ) i^i Prime ) ) |