Metamath Proof Explorer


Theorem ppisval2

Description: The set of primes less than A expressed using a finite set of integers. (Contributed by Mario Carneiro, 22-Sep-2014)

Ref Expression
Assertion ppisval2
|- ( ( A e. RR /\ 2 e. ( ZZ>= ` M ) ) -> ( ( 0 [,] A ) i^i Prime ) = ( ( M ... ( |_ ` A ) ) i^i Prime ) )

Proof

Step Hyp Ref Expression
1 ppisval
 |-  ( A e. RR -> ( ( 0 [,] A ) i^i Prime ) = ( ( 2 ... ( |_ ` A ) ) i^i Prime ) )
2 1 adantr
 |-  ( ( A e. RR /\ 2 e. ( ZZ>= ` M ) ) -> ( ( 0 [,] A ) i^i Prime ) = ( ( 2 ... ( |_ ` A ) ) i^i Prime ) )
3 fzss1
 |-  ( 2 e. ( ZZ>= ` M ) -> ( 2 ... ( |_ ` A ) ) C_ ( M ... ( |_ ` A ) ) )
4 3 adantl
 |-  ( ( A e. RR /\ 2 e. ( ZZ>= ` M ) ) -> ( 2 ... ( |_ ` A ) ) C_ ( M ... ( |_ ` A ) ) )
5 4 ssrind
 |-  ( ( A e. RR /\ 2 e. ( ZZ>= ` M ) ) -> ( ( 2 ... ( |_ ` A ) ) i^i Prime ) C_ ( ( M ... ( |_ ` A ) ) i^i Prime ) )
6 simpr
 |-  ( ( ( A e. RR /\ 2 e. ( ZZ>= ` M ) ) /\ x e. ( ( M ... ( |_ ` A ) ) i^i Prime ) ) -> x e. ( ( M ... ( |_ ` A ) ) i^i Prime ) )
7 elin
 |-  ( x e. ( ( M ... ( |_ ` A ) ) i^i Prime ) <-> ( x e. ( M ... ( |_ ` A ) ) /\ x e. Prime ) )
8 6 7 sylib
 |-  ( ( ( A e. RR /\ 2 e. ( ZZ>= ` M ) ) /\ x e. ( ( M ... ( |_ ` A ) ) i^i Prime ) ) -> ( x e. ( M ... ( |_ ` A ) ) /\ x e. Prime ) )
9 8 simprd
 |-  ( ( ( A e. RR /\ 2 e. ( ZZ>= ` M ) ) /\ x e. ( ( M ... ( |_ ` A ) ) i^i Prime ) ) -> x e. Prime )
10 prmuz2
 |-  ( x e. Prime -> x e. ( ZZ>= ` 2 ) )
11 9 10 syl
 |-  ( ( ( A e. RR /\ 2 e. ( ZZ>= ` M ) ) /\ x e. ( ( M ... ( |_ ` A ) ) i^i Prime ) ) -> x e. ( ZZ>= ` 2 ) )
12 8 simpld
 |-  ( ( ( A e. RR /\ 2 e. ( ZZ>= ` M ) ) /\ x e. ( ( M ... ( |_ ` A ) ) i^i Prime ) ) -> x e. ( M ... ( |_ ` A ) ) )
13 elfzuz3
 |-  ( x e. ( M ... ( |_ ` A ) ) -> ( |_ ` A ) e. ( ZZ>= ` x ) )
14 12 13 syl
 |-  ( ( ( A e. RR /\ 2 e. ( ZZ>= ` M ) ) /\ x e. ( ( M ... ( |_ ` A ) ) i^i Prime ) ) -> ( |_ ` A ) e. ( ZZ>= ` x ) )
15 elfzuzb
 |-  ( x e. ( 2 ... ( |_ ` A ) ) <-> ( x e. ( ZZ>= ` 2 ) /\ ( |_ ` A ) e. ( ZZ>= ` x ) ) )
16 11 14 15 sylanbrc
 |-  ( ( ( A e. RR /\ 2 e. ( ZZ>= ` M ) ) /\ x e. ( ( M ... ( |_ ` A ) ) i^i Prime ) ) -> x e. ( 2 ... ( |_ ` A ) ) )
17 16 9 elind
 |-  ( ( ( A e. RR /\ 2 e. ( ZZ>= ` M ) ) /\ x e. ( ( M ... ( |_ ` A ) ) i^i Prime ) ) -> x e. ( ( 2 ... ( |_ ` A ) ) i^i Prime ) )
18 5 17 eqelssd
 |-  ( ( A e. RR /\ 2 e. ( ZZ>= ` M ) ) -> ( ( 2 ... ( |_ ` A ) ) i^i Prime ) = ( ( M ... ( |_ ` A ) ) i^i Prime ) )
19 2 18 eqtrd
 |-  ( ( A e. RR /\ 2 e. ( ZZ>= ` M ) ) -> ( ( 0 [,] A ) i^i Prime ) = ( ( M ... ( |_ ` A ) ) i^i Prime ) )