| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ppisval |
|- ( A e. RR -> ( ( 0 [,] A ) i^i Prime ) = ( ( 2 ... ( |_ ` A ) ) i^i Prime ) ) |
| 2 |
1
|
adantr |
|- ( ( A e. RR /\ 2 e. ( ZZ>= ` M ) ) -> ( ( 0 [,] A ) i^i Prime ) = ( ( 2 ... ( |_ ` A ) ) i^i Prime ) ) |
| 3 |
|
fzss1 |
|- ( 2 e. ( ZZ>= ` M ) -> ( 2 ... ( |_ ` A ) ) C_ ( M ... ( |_ ` A ) ) ) |
| 4 |
3
|
adantl |
|- ( ( A e. RR /\ 2 e. ( ZZ>= ` M ) ) -> ( 2 ... ( |_ ` A ) ) C_ ( M ... ( |_ ` A ) ) ) |
| 5 |
4
|
ssrind |
|- ( ( A e. RR /\ 2 e. ( ZZ>= ` M ) ) -> ( ( 2 ... ( |_ ` A ) ) i^i Prime ) C_ ( ( M ... ( |_ ` A ) ) i^i Prime ) ) |
| 6 |
|
simpr |
|- ( ( ( A e. RR /\ 2 e. ( ZZ>= ` M ) ) /\ x e. ( ( M ... ( |_ ` A ) ) i^i Prime ) ) -> x e. ( ( M ... ( |_ ` A ) ) i^i Prime ) ) |
| 7 |
|
elin |
|- ( x e. ( ( M ... ( |_ ` A ) ) i^i Prime ) <-> ( x e. ( M ... ( |_ ` A ) ) /\ x e. Prime ) ) |
| 8 |
6 7
|
sylib |
|- ( ( ( A e. RR /\ 2 e. ( ZZ>= ` M ) ) /\ x e. ( ( M ... ( |_ ` A ) ) i^i Prime ) ) -> ( x e. ( M ... ( |_ ` A ) ) /\ x e. Prime ) ) |
| 9 |
8
|
simprd |
|- ( ( ( A e. RR /\ 2 e. ( ZZ>= ` M ) ) /\ x e. ( ( M ... ( |_ ` A ) ) i^i Prime ) ) -> x e. Prime ) |
| 10 |
|
prmuz2 |
|- ( x e. Prime -> x e. ( ZZ>= ` 2 ) ) |
| 11 |
9 10
|
syl |
|- ( ( ( A e. RR /\ 2 e. ( ZZ>= ` M ) ) /\ x e. ( ( M ... ( |_ ` A ) ) i^i Prime ) ) -> x e. ( ZZ>= ` 2 ) ) |
| 12 |
8
|
simpld |
|- ( ( ( A e. RR /\ 2 e. ( ZZ>= ` M ) ) /\ x e. ( ( M ... ( |_ ` A ) ) i^i Prime ) ) -> x e. ( M ... ( |_ ` A ) ) ) |
| 13 |
|
elfzuz3 |
|- ( x e. ( M ... ( |_ ` A ) ) -> ( |_ ` A ) e. ( ZZ>= ` x ) ) |
| 14 |
12 13
|
syl |
|- ( ( ( A e. RR /\ 2 e. ( ZZ>= ` M ) ) /\ x e. ( ( M ... ( |_ ` A ) ) i^i Prime ) ) -> ( |_ ` A ) e. ( ZZ>= ` x ) ) |
| 15 |
|
elfzuzb |
|- ( x e. ( 2 ... ( |_ ` A ) ) <-> ( x e. ( ZZ>= ` 2 ) /\ ( |_ ` A ) e. ( ZZ>= ` x ) ) ) |
| 16 |
11 14 15
|
sylanbrc |
|- ( ( ( A e. RR /\ 2 e. ( ZZ>= ` M ) ) /\ x e. ( ( M ... ( |_ ` A ) ) i^i Prime ) ) -> x e. ( 2 ... ( |_ ` A ) ) ) |
| 17 |
16 9
|
elind |
|- ( ( ( A e. RR /\ 2 e. ( ZZ>= ` M ) ) /\ x e. ( ( M ... ( |_ ` A ) ) i^i Prime ) ) -> x e. ( ( 2 ... ( |_ ` A ) ) i^i Prime ) ) |
| 18 |
5 17
|
eqelssd |
|- ( ( A e. RR /\ 2 e. ( ZZ>= ` M ) ) -> ( ( 2 ... ( |_ ` A ) ) i^i Prime ) = ( ( M ... ( |_ ` A ) ) i^i Prime ) ) |
| 19 |
2 18
|
eqtrd |
|- ( ( A e. RR /\ 2 e. ( ZZ>= ` M ) ) -> ( ( 0 [,] A ) i^i Prime ) = ( ( M ... ( |_ ` A ) ) i^i Prime ) ) |