Metamath Proof Explorer


Theorem muval2

Description: The value of the Möbius function at a squarefree number. (Contributed by Mario Carneiro, 3-Oct-2014)

Ref Expression
Assertion muval2 AμA0μA=1p|pA

Proof

Step Hyp Ref Expression
1 df-ne μA0¬μA=0
2 ifeqor ifpp2A01p|pA=0ifpp2A01p|pA=1p|pA
3 muval AμA=ifpp2A01p|pA
4 3 eqeq1d AμA=0ifpp2A01p|pA=0
5 3 eqeq1d AμA=1p|pAifpp2A01p|pA=1p|pA
6 4 5 orbi12d AμA=0μA=1p|pAifpp2A01p|pA=0ifpp2A01p|pA=1p|pA
7 2 6 mpbiri AμA=0μA=1p|pA
8 7 ord A¬μA=0μA=1p|pA
9 1 8 biimtrid AμA0μA=1p|pA
10 9 imp AμA0μA=1p|pA