| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fsumfldivdiag.1 | ⊢ ( 𝜑  →  𝐴  ∈  ℝ ) | 
						
							| 2 |  | fsumfldivdiag.2 | ⊢ ( ( 𝜑  ∧  ( 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) )  ∧  𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝐴  /  𝑛 ) ) ) ) )  →  𝐵  ∈  ℂ ) | 
						
							| 3 |  | fzfid | ⊢ ( 𝜑  →  ( 1 ... ( ⌊ ‘ 𝐴 ) )  ∈  Fin ) | 
						
							| 4 |  | fzfid | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) ) )  →  ( 1 ... ( ⌊ ‘ ( 𝐴  /  𝑛 ) ) )  ∈  Fin ) | 
						
							| 5 | 1 | fsumfldivdiaglem | ⊢ ( 𝜑  →  ( ( 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) )  ∧  𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝐴  /  𝑛 ) ) ) )  →  ( 𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ ( 𝐴  /  𝑚 ) ) ) ) ) ) | 
						
							| 6 | 1 | fsumfldivdiaglem | ⊢ ( 𝜑  →  ( ( 𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ ( 𝐴  /  𝑚 ) ) ) )  →  ( 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) )  ∧  𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝐴  /  𝑛 ) ) ) ) ) ) | 
						
							| 7 | 5 6 | impbid | ⊢ ( 𝜑  →  ( ( 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) )  ∧  𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝐴  /  𝑛 ) ) ) )  ↔  ( 𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ ( 𝐴  /  𝑚 ) ) ) ) ) ) | 
						
							| 8 | 3 3 4 7 2 | fsumcom2 | ⊢ ( 𝜑  →  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) ) Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝐴  /  𝑛 ) ) ) 𝐵  =  Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) ) Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ ( 𝐴  /  𝑚 ) ) ) 𝐵 ) |