| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fsumfldivdiag.1 | ⊢ ( 𝜑  →  𝐴  ∈  ℝ ) | 
						
							| 2 |  | simprr | ⊢ ( ( 𝜑  ∧  ( 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) )  ∧  𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝐴  /  𝑛 ) ) ) ) )  →  𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝐴  /  𝑛 ) ) ) ) | 
						
							| 3 | 1 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) )  ∧  𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝐴  /  𝑛 ) ) ) ) )  →  𝐴  ∈  ℝ ) | 
						
							| 4 |  | simprl | ⊢ ( ( 𝜑  ∧  ( 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) )  ∧  𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝐴  /  𝑛 ) ) ) ) )  →  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) | 
						
							| 5 |  | fznnfl | ⊢ ( 𝐴  ∈  ℝ  →  ( 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) )  ↔  ( 𝑛  ∈  ℕ  ∧  𝑛  ≤  𝐴 ) ) ) | 
						
							| 6 | 3 5 | syl | ⊢ ( ( 𝜑  ∧  ( 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) )  ∧  𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝐴  /  𝑛 ) ) ) ) )  →  ( 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) )  ↔  ( 𝑛  ∈  ℕ  ∧  𝑛  ≤  𝐴 ) ) ) | 
						
							| 7 | 4 6 | mpbid | ⊢ ( ( 𝜑  ∧  ( 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) )  ∧  𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝐴  /  𝑛 ) ) ) ) )  →  ( 𝑛  ∈  ℕ  ∧  𝑛  ≤  𝐴 ) ) | 
						
							| 8 | 7 | simpld | ⊢ ( ( 𝜑  ∧  ( 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) )  ∧  𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝐴  /  𝑛 ) ) ) ) )  →  𝑛  ∈  ℕ ) | 
						
							| 9 | 3 8 | nndivred | ⊢ ( ( 𝜑  ∧  ( 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) )  ∧  𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝐴  /  𝑛 ) ) ) ) )  →  ( 𝐴  /  𝑛 )  ∈  ℝ ) | 
						
							| 10 |  | fznnfl | ⊢ ( ( 𝐴  /  𝑛 )  ∈  ℝ  →  ( 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝐴  /  𝑛 ) ) )  ↔  ( 𝑚  ∈  ℕ  ∧  𝑚  ≤  ( 𝐴  /  𝑛 ) ) ) ) | 
						
							| 11 | 9 10 | syl | ⊢ ( ( 𝜑  ∧  ( 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) )  ∧  𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝐴  /  𝑛 ) ) ) ) )  →  ( 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝐴  /  𝑛 ) ) )  ↔  ( 𝑚  ∈  ℕ  ∧  𝑚  ≤  ( 𝐴  /  𝑛 ) ) ) ) | 
						
							| 12 | 2 11 | mpbid | ⊢ ( ( 𝜑  ∧  ( 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) )  ∧  𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝐴  /  𝑛 ) ) ) ) )  →  ( 𝑚  ∈  ℕ  ∧  𝑚  ≤  ( 𝐴  /  𝑛 ) ) ) | 
						
							| 13 | 12 | simpld | ⊢ ( ( 𝜑  ∧  ( 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) )  ∧  𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝐴  /  𝑛 ) ) ) ) )  →  𝑚  ∈  ℕ ) | 
						
							| 14 | 13 | nnred | ⊢ ( ( 𝜑  ∧  ( 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) )  ∧  𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝐴  /  𝑛 ) ) ) ) )  →  𝑚  ∈  ℝ ) | 
						
							| 15 | 12 | simprd | ⊢ ( ( 𝜑  ∧  ( 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) )  ∧  𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝐴  /  𝑛 ) ) ) ) )  →  𝑚  ≤  ( 𝐴  /  𝑛 ) ) | 
						
							| 16 | 3 | recnd | ⊢ ( ( 𝜑  ∧  ( 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) )  ∧  𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝐴  /  𝑛 ) ) ) ) )  →  𝐴  ∈  ℂ ) | 
						
							| 17 | 16 | mullidd | ⊢ ( ( 𝜑  ∧  ( 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) )  ∧  𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝐴  /  𝑛 ) ) ) ) )  →  ( 1  ·  𝐴 )  =  𝐴 ) | 
						
							| 18 | 8 | nnge1d | ⊢ ( ( 𝜑  ∧  ( 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) )  ∧  𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝐴  /  𝑛 ) ) ) ) )  →  1  ≤  𝑛 ) | 
						
							| 19 |  | 1red | ⊢ ( ( 𝜑  ∧  ( 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) )  ∧  𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝐴  /  𝑛 ) ) ) ) )  →  1  ∈  ℝ ) | 
						
							| 20 | 8 | nnred | ⊢ ( ( 𝜑  ∧  ( 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) )  ∧  𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝐴  /  𝑛 ) ) ) ) )  →  𝑛  ∈  ℝ ) | 
						
							| 21 |  | 0red | ⊢ ( ( 𝜑  ∧  ( 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) )  ∧  𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝐴  /  𝑛 ) ) ) ) )  →  0  ∈  ℝ ) | 
						
							| 22 | 8 13 | nnmulcld | ⊢ ( ( 𝜑  ∧  ( 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) )  ∧  𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝐴  /  𝑛 ) ) ) ) )  →  ( 𝑛  ·  𝑚 )  ∈  ℕ ) | 
						
							| 23 | 22 | nnred | ⊢ ( ( 𝜑  ∧  ( 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) )  ∧  𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝐴  /  𝑛 ) ) ) ) )  →  ( 𝑛  ·  𝑚 )  ∈  ℝ ) | 
						
							| 24 | 22 | nngt0d | ⊢ ( ( 𝜑  ∧  ( 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) )  ∧  𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝐴  /  𝑛 ) ) ) ) )  →  0  <  ( 𝑛  ·  𝑚 ) ) | 
						
							| 25 | 8 | nngt0d | ⊢ ( ( 𝜑  ∧  ( 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) )  ∧  𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝐴  /  𝑛 ) ) ) ) )  →  0  <  𝑛 ) | 
						
							| 26 |  | lemuldiv2 | ⊢ ( ( 𝑚  ∈  ℝ  ∧  𝐴  ∈  ℝ  ∧  ( 𝑛  ∈  ℝ  ∧  0  <  𝑛 ) )  →  ( ( 𝑛  ·  𝑚 )  ≤  𝐴  ↔  𝑚  ≤  ( 𝐴  /  𝑛 ) ) ) | 
						
							| 27 | 14 3 20 25 26 | syl112anc | ⊢ ( ( 𝜑  ∧  ( 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) )  ∧  𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝐴  /  𝑛 ) ) ) ) )  →  ( ( 𝑛  ·  𝑚 )  ≤  𝐴  ↔  𝑚  ≤  ( 𝐴  /  𝑛 ) ) ) | 
						
							| 28 | 15 27 | mpbird | ⊢ ( ( 𝜑  ∧  ( 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) )  ∧  𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝐴  /  𝑛 ) ) ) ) )  →  ( 𝑛  ·  𝑚 )  ≤  𝐴 ) | 
						
							| 29 | 21 23 3 24 28 | ltletrd | ⊢ ( ( 𝜑  ∧  ( 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) )  ∧  𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝐴  /  𝑛 ) ) ) ) )  →  0  <  𝐴 ) | 
						
							| 30 |  | lemul1 | ⊢ ( ( 1  ∈  ℝ  ∧  𝑛  ∈  ℝ  ∧  ( 𝐴  ∈  ℝ  ∧  0  <  𝐴 ) )  →  ( 1  ≤  𝑛  ↔  ( 1  ·  𝐴 )  ≤  ( 𝑛  ·  𝐴 ) ) ) | 
						
							| 31 | 19 20 3 29 30 | syl112anc | ⊢ ( ( 𝜑  ∧  ( 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) )  ∧  𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝐴  /  𝑛 ) ) ) ) )  →  ( 1  ≤  𝑛  ↔  ( 1  ·  𝐴 )  ≤  ( 𝑛  ·  𝐴 ) ) ) | 
						
							| 32 | 18 31 | mpbid | ⊢ ( ( 𝜑  ∧  ( 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) )  ∧  𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝐴  /  𝑛 ) ) ) ) )  →  ( 1  ·  𝐴 )  ≤  ( 𝑛  ·  𝐴 ) ) | 
						
							| 33 | 17 32 | eqbrtrrd | ⊢ ( ( 𝜑  ∧  ( 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) )  ∧  𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝐴  /  𝑛 ) ) ) ) )  →  𝐴  ≤  ( 𝑛  ·  𝐴 ) ) | 
						
							| 34 |  | ledivmul | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐴  ∈  ℝ  ∧  ( 𝑛  ∈  ℝ  ∧  0  <  𝑛 ) )  →  ( ( 𝐴  /  𝑛 )  ≤  𝐴  ↔  𝐴  ≤  ( 𝑛  ·  𝐴 ) ) ) | 
						
							| 35 | 3 3 20 25 34 | syl112anc | ⊢ ( ( 𝜑  ∧  ( 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) )  ∧  𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝐴  /  𝑛 ) ) ) ) )  →  ( ( 𝐴  /  𝑛 )  ≤  𝐴  ↔  𝐴  ≤  ( 𝑛  ·  𝐴 ) ) ) | 
						
							| 36 | 33 35 | mpbird | ⊢ ( ( 𝜑  ∧  ( 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) )  ∧  𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝐴  /  𝑛 ) ) ) ) )  →  ( 𝐴  /  𝑛 )  ≤  𝐴 ) | 
						
							| 37 | 14 9 3 15 36 | letrd | ⊢ ( ( 𝜑  ∧  ( 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) )  ∧  𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝐴  /  𝑛 ) ) ) ) )  →  𝑚  ≤  𝐴 ) | 
						
							| 38 |  | fznnfl | ⊢ ( 𝐴  ∈  ℝ  →  ( 𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) )  ↔  ( 𝑚  ∈  ℕ  ∧  𝑚  ≤  𝐴 ) ) ) | 
						
							| 39 | 3 38 | syl | ⊢ ( ( 𝜑  ∧  ( 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) )  ∧  𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝐴  /  𝑛 ) ) ) ) )  →  ( 𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) )  ↔  ( 𝑚  ∈  ℕ  ∧  𝑚  ≤  𝐴 ) ) ) | 
						
							| 40 | 13 37 39 | mpbir2and | ⊢ ( ( 𝜑  ∧  ( 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) )  ∧  𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝐴  /  𝑛 ) ) ) ) )  →  𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) | 
						
							| 41 | 13 | nngt0d | ⊢ ( ( 𝜑  ∧  ( 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) )  ∧  𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝐴  /  𝑛 ) ) ) ) )  →  0  <  𝑚 ) | 
						
							| 42 |  | lemuldiv | ⊢ ( ( 𝑛  ∈  ℝ  ∧  𝐴  ∈  ℝ  ∧  ( 𝑚  ∈  ℝ  ∧  0  <  𝑚 ) )  →  ( ( 𝑛  ·  𝑚 )  ≤  𝐴  ↔  𝑛  ≤  ( 𝐴  /  𝑚 ) ) ) | 
						
							| 43 | 20 3 14 41 42 | syl112anc | ⊢ ( ( 𝜑  ∧  ( 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) )  ∧  𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝐴  /  𝑛 ) ) ) ) )  →  ( ( 𝑛  ·  𝑚 )  ≤  𝐴  ↔  𝑛  ≤  ( 𝐴  /  𝑚 ) ) ) | 
						
							| 44 | 28 43 | mpbid | ⊢ ( ( 𝜑  ∧  ( 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) )  ∧  𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝐴  /  𝑛 ) ) ) ) )  →  𝑛  ≤  ( 𝐴  /  𝑚 ) ) | 
						
							| 45 | 3 13 | nndivred | ⊢ ( ( 𝜑  ∧  ( 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) )  ∧  𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝐴  /  𝑛 ) ) ) ) )  →  ( 𝐴  /  𝑚 )  ∈  ℝ ) | 
						
							| 46 |  | fznnfl | ⊢ ( ( 𝐴  /  𝑚 )  ∈  ℝ  →  ( 𝑛  ∈  ( 1 ... ( ⌊ ‘ ( 𝐴  /  𝑚 ) ) )  ↔  ( 𝑛  ∈  ℕ  ∧  𝑛  ≤  ( 𝐴  /  𝑚 ) ) ) ) | 
						
							| 47 | 45 46 | syl | ⊢ ( ( 𝜑  ∧  ( 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) )  ∧  𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝐴  /  𝑛 ) ) ) ) )  →  ( 𝑛  ∈  ( 1 ... ( ⌊ ‘ ( 𝐴  /  𝑚 ) ) )  ↔  ( 𝑛  ∈  ℕ  ∧  𝑛  ≤  ( 𝐴  /  𝑚 ) ) ) ) | 
						
							| 48 | 8 44 47 | mpbir2and | ⊢ ( ( 𝜑  ∧  ( 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) )  ∧  𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝐴  /  𝑛 ) ) ) ) )  →  𝑛  ∈  ( 1 ... ( ⌊ ‘ ( 𝐴  /  𝑚 ) ) ) ) | 
						
							| 49 | 40 48 | jca | ⊢ ( ( 𝜑  ∧  ( 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) )  ∧  𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝐴  /  𝑛 ) ) ) ) )  →  ( 𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ ( 𝐴  /  𝑚 ) ) ) ) ) | 
						
							| 50 | 49 | ex | ⊢ ( 𝜑  →  ( ( 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) )  ∧  𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝐴  /  𝑛 ) ) ) )  →  ( 𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ ( 𝐴  /  𝑚 ) ) ) ) ) ) |