| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fsumge0cl.a |
|- ( ph -> A e. Fin ) |
| 2 |
|
fsumge0cl.b |
|- ( ( ph /\ k e. A ) -> B e. ( 0 [,) +oo ) ) |
| 3 |
|
0xr |
|- 0 e. RR* |
| 4 |
3
|
a1i |
|- ( ph -> 0 e. RR* ) |
| 5 |
|
pnfxr |
|- +oo e. RR* |
| 6 |
5
|
a1i |
|- ( ph -> +oo e. RR* ) |
| 7 |
|
rge0ssre |
|- ( 0 [,) +oo ) C_ RR |
| 8 |
7 2
|
sselid |
|- ( ( ph /\ k e. A ) -> B e. RR ) |
| 9 |
1 8
|
fsumrecl |
|- ( ph -> sum_ k e. A B e. RR ) |
| 10 |
9
|
rexrd |
|- ( ph -> sum_ k e. A B e. RR* ) |
| 11 |
3
|
a1i |
|- ( ( ph /\ k e. A ) -> 0 e. RR* ) |
| 12 |
5
|
a1i |
|- ( ( ph /\ k e. A ) -> +oo e. RR* ) |
| 13 |
|
icogelb |
|- ( ( 0 e. RR* /\ +oo e. RR* /\ B e. ( 0 [,) +oo ) ) -> 0 <_ B ) |
| 14 |
11 12 2 13
|
syl3anc |
|- ( ( ph /\ k e. A ) -> 0 <_ B ) |
| 15 |
1 8 14
|
fsumge0 |
|- ( ph -> 0 <_ sum_ k e. A B ) |
| 16 |
9
|
ltpnfd |
|- ( ph -> sum_ k e. A B < +oo ) |
| 17 |
4 6 10 15 16
|
elicod |
|- ( ph -> sum_ k e. A B e. ( 0 [,) +oo ) ) |