| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fsuppinisegfi.1 |
|- ( ph -> F e. V ) |
| 2 |
|
fsuppinisegfi.2 |
|- ( ph -> .0. e. W ) |
| 3 |
|
fsuppinisegfi.3 |
|- ( ph -> Y e. ( _V \ { .0. } ) ) |
| 4 |
|
fsuppinisegfi.4 |
|- ( ph -> F finSupp .0. ) |
| 5 |
4
|
fsuppimpd |
|- ( ph -> ( F supp .0. ) e. Fin ) |
| 6 |
3
|
snssd |
|- ( ph -> { Y } C_ ( _V \ { .0. } ) ) |
| 7 |
|
imass2 |
|- ( { Y } C_ ( _V \ { .0. } ) -> ( `' F " { Y } ) C_ ( `' F " ( _V \ { .0. } ) ) ) |
| 8 |
6 7
|
syl |
|- ( ph -> ( `' F " { Y } ) C_ ( `' F " ( _V \ { .0. } ) ) ) |
| 9 |
|
suppimacnvss |
|- ( ( F e. V /\ .0. e. W ) -> ( `' F " ( _V \ { .0. } ) ) C_ ( F supp .0. ) ) |
| 10 |
1 2 9
|
syl2anc |
|- ( ph -> ( `' F " ( _V \ { .0. } ) ) C_ ( F supp .0. ) ) |
| 11 |
8 10
|
sstrd |
|- ( ph -> ( `' F " { Y } ) C_ ( F supp .0. ) ) |
| 12 |
5 11
|
ssfid |
|- ( ph -> ( `' F " { Y } ) e. Fin ) |