Metamath Proof Explorer


Theorem fsuppinisegfi

Description: The initial segment (`' F " { Y } ) of a nonzero Y is finite if F ` has finite support. (Contributed by Thierry Arnoux, 21-Jun-2024)

Ref Expression
Hypotheses fsuppinisegfi.1
|- ( ph -> F e. V )
fsuppinisegfi.2
|- ( ph -> .0. e. W )
fsuppinisegfi.3
|- ( ph -> Y e. ( _V \ { .0. } ) )
fsuppinisegfi.4
|- ( ph -> F finSupp .0. )
Assertion fsuppinisegfi
|- ( ph -> ( `' F " { Y } ) e. Fin )

Proof

Step Hyp Ref Expression
1 fsuppinisegfi.1
 |-  ( ph -> F e. V )
2 fsuppinisegfi.2
 |-  ( ph -> .0. e. W )
3 fsuppinisegfi.3
 |-  ( ph -> Y e. ( _V \ { .0. } ) )
4 fsuppinisegfi.4
 |-  ( ph -> F finSupp .0. )
5 4 fsuppimpd
 |-  ( ph -> ( F supp .0. ) e. Fin )
6 3 snssd
 |-  ( ph -> { Y } C_ ( _V \ { .0. } ) )
7 imass2
 |-  ( { Y } C_ ( _V \ { .0. } ) -> ( `' F " { Y } ) C_ ( `' F " ( _V \ { .0. } ) ) )
8 6 7 syl
 |-  ( ph -> ( `' F " { Y } ) C_ ( `' F " ( _V \ { .0. } ) ) )
9 suppimacnvss
 |-  ( ( F e. V /\ .0. e. W ) -> ( `' F " ( _V \ { .0. } ) ) C_ ( F supp .0. ) )
10 1 2 9 syl2anc
 |-  ( ph -> ( `' F " ( _V \ { .0. } ) ) C_ ( F supp .0. ) )
11 8 10 sstrd
 |-  ( ph -> ( `' F " { Y } ) C_ ( F supp .0. ) )
12 5 11 ssfid
 |-  ( ph -> ( `' F " { Y } ) e. Fin )