Description: Equivalence of function value and binary relation, analogous to funbrfvb . (Contributed by AV, 6-Sep-2022)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | funbrafv22b | |- ( ( Fun F /\ A e. dom F ) -> ( ( F '''' A ) = B <-> A F B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funfn | |- ( Fun F <-> F Fn dom F ) |
|
| 2 | fnbrafv2b | |- ( ( F Fn dom F /\ A e. dom F ) -> ( ( F '''' A ) = B <-> A F B ) ) |
|
| 3 | 1 2 | sylanb | |- ( ( Fun F /\ A e. dom F ) -> ( ( F '''' A ) = B <-> A F B ) ) |