Metamath Proof Explorer


Theorem funbrafv22b

Description: Equivalence of function value and binary relation, analogous to funbrfvb . (Contributed by AV, 6-Sep-2022)

Ref Expression
Assertion funbrafv22b Fun F A dom F F '''' A = B A F B

Proof

Step Hyp Ref Expression
1 funfn Fun F F Fn dom F
2 fnbrafv2b F Fn dom F A dom F F '''' A = B A F B
3 1 2 sylanb Fun F A dom F F '''' A = B A F B