Metamath Proof Explorer


Theorem fnbrafv2b

Description: Equivalence of function value and binary relation, analogous to fnbrfvb . (Contributed by AV, 6-Sep-2022)

Ref Expression
Assertion fnbrafv2b F Fn A B A F '''' B = C B F C

Proof

Step Hyp Ref Expression
1 eqid F '''' B = F '''' B
2 fundmdfat Fun F B dom F F defAt B
3 2 funfni F Fn A B A F defAt B
4 dfatafv2ex F defAt B F '''' B V
5 3 4 syl F Fn A B A F '''' B V
6 eqeq2 x = F '''' B F '''' B = x F '''' B = F '''' B
7 breq2 x = F '''' B B F x B F F '''' B
8 6 7 bibi12d x = F '''' B F '''' B = x B F x F '''' B = F '''' B B F F '''' B
9 8 adantl F Fn A B A x = F '''' B F '''' B = x B F x F '''' B = F '''' B B F F '''' B
10 fneu F Fn A B A ∃! x B F x
11 tz6.12c-afv2 ∃! x B F x F '''' B = x B F x
12 10 11 syl F Fn A B A F '''' B = x B F x
13 5 9 12 vtocld F Fn A B A F '''' B = F '''' B B F F '''' B
14 1 13 mpbii F Fn A B A B F F '''' B
15 breq2 F '''' B = C B F F '''' B B F C
16 14 15 syl5ibcom F Fn A B A F '''' B = C B F C
17 fnfun F Fn A Fun F
18 funbrafv2 Fun F B F C F '''' B = C
19 17 18 syl F Fn A B F C F '''' B = C
20 19 adantr F Fn A B A B F C F '''' B = C
21 16 20 impbid F Fn A B A F '''' B = C B F C