Metamath Proof Explorer


Theorem funbrafv2

Description: The second argument of a binary relation on a function is the function's value, analogous to funbrfv . (Contributed by AV, 6-Sep-2022)

Ref Expression
Assertion funbrafv2 FunFAFBF''''A=B

Proof

Step Hyp Ref Expression
1 funrel FunFRelF
2 brrelex2 RelFAFBBV
3 1 2 sylan FunFAFBBV
4 breq2 x=BAFxAFB
5 4 anbi2d x=BFunFAFxFunFAFB
6 eqeq2 x=BF''''A=xF''''A=B
7 5 6 imbi12d x=BFunFAFxF''''A=xFunFAFBF''''A=B
8 funeu FunFAFx∃!xAFx
9 tz6.12-1-afv2 AFx∃!xAFxF''''A=x
10 8 9 sylan2 AFxFunFAFxF''''A=x
11 10 anabss7 FunFAFxF''''A=x
12 7 11 vtoclg BVFunFAFBF''''A=B
13 3 12 mpcom FunFAFBF''''A=B
14 13 ex FunFAFBF''''A=B