Metamath Proof Explorer


Theorem funbrafv2

Description: The second argument of a binary relation on a function is the function's value, analogous to funbrfv . (Contributed by AV, 6-Sep-2022)

Ref Expression
Assertion funbrafv2 Fun F A F B F '''' A = B

Proof

Step Hyp Ref Expression
1 funrel Fun F Rel F
2 brrelex2 Rel F A F B B V
3 1 2 sylan Fun F A F B B V
4 breq2 x = B A F x A F B
5 4 anbi2d x = B Fun F A F x Fun F A F B
6 eqeq2 x = B F '''' A = x F '''' A = B
7 5 6 imbi12d x = B Fun F A F x F '''' A = x Fun F A F B F '''' A = B
8 funeu Fun F A F x ∃! x A F x
9 tz6.12-1-afv2 A F x ∃! x A F x F '''' A = x
10 8 9 sylan2 A F x Fun F A F x F '''' A = x
11 10 anabss7 Fun F A F x F '''' A = x
12 7 11 vtoclg B V Fun F A F B F '''' A = B
13 3 12 mpcom Fun F A F B F '''' A = B
14 13 ex Fun F A F B F '''' A = B