Metamath Proof Explorer


Theorem tz6.12-1-afv2

Description: Function value (Theorem 6.12(1) of TakeutiZaring p. 27), analogous to tz6.12-1 . (Contributed by AV, 5-Sep-2022)

Ref Expression
Assertion tz6.12-1-afv2 AFy∃!yAFyF''''A=y

Proof

Step Hyp Ref Expression
1 df-br AFyAyF
2 1 eubii ∃!yAFy∃!yAyF
3 tz6.12-afv2 AyF∃!yAyFF''''A=y
4 1 2 3 syl2anb AFy∃!yAFyF''''A=y