Metamath Proof Explorer


Theorem tz6.12-1-afv2

Description: Function value (Theorem 6.12(1) of TakeutiZaring p. 27), analogous to tz6.12-1 . (Contributed by AV, 5-Sep-2022)

Ref Expression
Assertion tz6.12-1-afv2 ( ( 𝐴 𝐹 𝑦 ∧ ∃! 𝑦 𝐴 𝐹 𝑦 ) → ( 𝐹 '''' 𝐴 ) = 𝑦 )

Proof

Step Hyp Ref Expression
1 df-br ( 𝐴 𝐹 𝑦 ↔ ⟨ 𝐴 , 𝑦 ⟩ ∈ 𝐹 )
2 1 eubii ( ∃! 𝑦 𝐴 𝐹 𝑦 ↔ ∃! 𝑦𝐴 , 𝑦 ⟩ ∈ 𝐹 )
3 tz6.12-afv2 ( ( ⟨ 𝐴 , 𝑦 ⟩ ∈ 𝐹 ∧ ∃! 𝑦𝐴 , 𝑦 ⟩ ∈ 𝐹 ) → ( 𝐹 '''' 𝐴 ) = 𝑦 )
4 1 2 3 syl2anb ( ( 𝐴 𝐹 𝑦 ∧ ∃! 𝑦 𝐴 𝐹 𝑦 ) → ( 𝐹 '''' 𝐴 ) = 𝑦 )