| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nfeu1 | ⊢ Ⅎ 𝑦 ∃! 𝑦 𝐴 𝐹 𝑦 | 
						
							| 2 |  | nfv | ⊢ Ⅎ 𝑦 𝐴 𝐹 ( 𝐹 '''' 𝐴 ) | 
						
							| 3 |  | euex | ⊢ ( ∃! 𝑦 𝐴 𝐹 𝑦  →  ∃ 𝑦 𝐴 𝐹 𝑦 ) | 
						
							| 4 |  | tz6.12-1-afv2 | ⊢ ( ( 𝐴 𝐹 𝑦  ∧  ∃! 𝑦 𝐴 𝐹 𝑦 )  →  ( 𝐹 '''' 𝐴 )  =  𝑦 ) | 
						
							| 5 | 4 | expcom | ⊢ ( ∃! 𝑦 𝐴 𝐹 𝑦  →  ( 𝐴 𝐹 𝑦  →  ( 𝐹 '''' 𝐴 )  =  𝑦 ) ) | 
						
							| 6 |  | breq2 | ⊢ ( ( 𝐹 '''' 𝐴 )  =  𝑦  →  ( 𝐴 𝐹 ( 𝐹 '''' 𝐴 )  ↔  𝐴 𝐹 𝑦 ) ) | 
						
							| 7 | 6 | biimprd | ⊢ ( ( 𝐹 '''' 𝐴 )  =  𝑦  →  ( 𝐴 𝐹 𝑦  →  𝐴 𝐹 ( 𝐹 '''' 𝐴 ) ) ) | 
						
							| 8 | 5 7 | syli | ⊢ ( ∃! 𝑦 𝐴 𝐹 𝑦  →  ( 𝐴 𝐹 𝑦  →  𝐴 𝐹 ( 𝐹 '''' 𝐴 ) ) ) | 
						
							| 9 | 1 2 3 8 | exlimimdd | ⊢ ( ∃! 𝑦 𝐴 𝐹 𝑦  →  𝐴 𝐹 ( 𝐹 '''' 𝐴 ) ) | 
						
							| 10 | 9 6 | syl5ibcom | ⊢ ( ∃! 𝑦 𝐴 𝐹 𝑦  →  ( ( 𝐹 '''' 𝐴 )  =  𝑦  →  𝐴 𝐹 𝑦 ) ) | 
						
							| 11 | 10 5 | impbid | ⊢ ( ∃! 𝑦 𝐴 𝐹 𝑦  →  ( ( 𝐹 '''' 𝐴 )  =  𝑦  ↔  𝐴 𝐹 𝑦 ) ) |