| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nfeu1 |
⊢ Ⅎ 𝑦 ∃! 𝑦 𝐴 𝐹 𝑦 |
| 2 |
|
nfv |
⊢ Ⅎ 𝑦 𝐴 𝐹 ( 𝐹 '''' 𝐴 ) |
| 3 |
|
euex |
⊢ ( ∃! 𝑦 𝐴 𝐹 𝑦 → ∃ 𝑦 𝐴 𝐹 𝑦 ) |
| 4 |
|
tz6.12-1-afv2 |
⊢ ( ( 𝐴 𝐹 𝑦 ∧ ∃! 𝑦 𝐴 𝐹 𝑦 ) → ( 𝐹 '''' 𝐴 ) = 𝑦 ) |
| 5 |
4
|
expcom |
⊢ ( ∃! 𝑦 𝐴 𝐹 𝑦 → ( 𝐴 𝐹 𝑦 → ( 𝐹 '''' 𝐴 ) = 𝑦 ) ) |
| 6 |
|
breq2 |
⊢ ( ( 𝐹 '''' 𝐴 ) = 𝑦 → ( 𝐴 𝐹 ( 𝐹 '''' 𝐴 ) ↔ 𝐴 𝐹 𝑦 ) ) |
| 7 |
6
|
biimprd |
⊢ ( ( 𝐹 '''' 𝐴 ) = 𝑦 → ( 𝐴 𝐹 𝑦 → 𝐴 𝐹 ( 𝐹 '''' 𝐴 ) ) ) |
| 8 |
5 7
|
syli |
⊢ ( ∃! 𝑦 𝐴 𝐹 𝑦 → ( 𝐴 𝐹 𝑦 → 𝐴 𝐹 ( 𝐹 '''' 𝐴 ) ) ) |
| 9 |
1 2 3 8
|
exlimimdd |
⊢ ( ∃! 𝑦 𝐴 𝐹 𝑦 → 𝐴 𝐹 ( 𝐹 '''' 𝐴 ) ) |
| 10 |
9 6
|
syl5ibcom |
⊢ ( ∃! 𝑦 𝐴 𝐹 𝑦 → ( ( 𝐹 '''' 𝐴 ) = 𝑦 → 𝐴 𝐹 𝑦 ) ) |
| 11 |
10 5
|
impbid |
⊢ ( ∃! 𝑦 𝐴 𝐹 𝑦 → ( ( 𝐹 '''' 𝐴 ) = 𝑦 ↔ 𝐴 𝐹 𝑦 ) ) |