| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eleq1 | ⊢ ( ( 𝐹 '''' 𝐴 )  =  𝑦  →  ( ( 𝐹 '''' 𝐴 )  ∈  ran  𝐹  ↔  𝑦  ∈  ran  𝐹 ) ) | 
						
							| 2 |  | dfatafv2rnb | ⊢ ( 𝐹  defAt  𝐴  ↔  ( 𝐹 '''' 𝐴 )  ∈  ran  𝐹 ) | 
						
							| 3 |  | dfdfat2 | ⊢ ( 𝐹  defAt  𝐴  ↔  ( 𝐴  ∈  dom  𝐹  ∧  ∃! 𝑦 𝐴 𝐹 𝑦 ) ) | 
						
							| 4 | 3 | simprbi | ⊢ ( 𝐹  defAt  𝐴  →  ∃! 𝑦 𝐴 𝐹 𝑦 ) | 
						
							| 5 | 2 4 | sylbir | ⊢ ( ( 𝐹 '''' 𝐴 )  ∈  ran  𝐹  →  ∃! 𝑦 𝐴 𝐹 𝑦 ) | 
						
							| 6 |  | tz6.12c-afv2 | ⊢ ( ∃! 𝑦 𝐴 𝐹 𝑦  →  ( ( 𝐹 '''' 𝐴 )  =  𝑦  ↔  𝐴 𝐹 𝑦 ) ) | 
						
							| 7 | 5 6 | syl | ⊢ ( ( 𝐹 '''' 𝐴 )  ∈  ran  𝐹  →  ( ( 𝐹 '''' 𝐴 )  =  𝑦  ↔  𝐴 𝐹 𝑦 ) ) | 
						
							| 8 | 7 | biimpcd | ⊢ ( ( 𝐹 '''' 𝐴 )  =  𝑦  →  ( ( 𝐹 '''' 𝐴 )  ∈  ran  𝐹  →  𝐴 𝐹 𝑦 ) ) | 
						
							| 9 | 1 8 | sylbird | ⊢ ( ( 𝐹 '''' 𝐴 )  =  𝑦  →  ( 𝑦  ∈  ran  𝐹  →  𝐴 𝐹 𝑦 ) ) | 
						
							| 10 | 9 | eqcoms | ⊢ ( 𝑦  =  ( 𝐹 '''' 𝐴 )  →  ( 𝑦  ∈  ran  𝐹  →  𝐴 𝐹 𝑦 ) ) | 
						
							| 11 |  | eleq1 | ⊢ ( 𝑦  =  ( 𝐹 '''' 𝐴 )  →  ( 𝑦  ∈  ran  𝐹  ↔  ( 𝐹 '''' 𝐴 )  ∈  ran  𝐹 ) ) | 
						
							| 12 |  | breq2 | ⊢ ( 𝑦  =  ( 𝐹 '''' 𝐴 )  →  ( 𝐴 𝐹 𝑦  ↔  𝐴 𝐹 ( 𝐹 '''' 𝐴 ) ) ) | 
						
							| 13 | 10 11 12 | 3imtr3d | ⊢ ( 𝑦  =  ( 𝐹 '''' 𝐴 )  →  ( ( 𝐹 '''' 𝐴 )  ∈  ran  𝐹  →  𝐴 𝐹 ( 𝐹 '''' 𝐴 ) ) ) | 
						
							| 14 | 13 | vtocleg | ⊢ ( ( 𝐹 '''' 𝐴 )  ∈  ran  𝐹  →  ( ( 𝐹 '''' 𝐴 )  ∈  ran  𝐹  →  𝐴 𝐹 ( 𝐹 '''' 𝐴 ) ) ) | 
						
							| 15 | 14 | pm2.43i | ⊢ ( ( 𝐹 '''' 𝐴 )  ∈  ran  𝐹  →  𝐴 𝐹 ( 𝐹 '''' 𝐴 ) ) | 
						
							| 16 | 15 | a1i | ⊢ ( ( 𝐹 '''' 𝐴 )  =  𝐵  →  ( ( 𝐹 '''' 𝐴 )  ∈  ran  𝐹  →  𝐴 𝐹 ( 𝐹 '''' 𝐴 ) ) ) | 
						
							| 17 |  | eleq1 | ⊢ ( ( 𝐹 '''' 𝐴 )  =  𝐵  →  ( ( 𝐹 '''' 𝐴 )  ∈  ran  𝐹  ↔  𝐵  ∈  ran  𝐹 ) ) | 
						
							| 18 |  | breq2 | ⊢ ( ( 𝐹 '''' 𝐴 )  =  𝐵  →  ( 𝐴 𝐹 ( 𝐹 '''' 𝐴 )  ↔  𝐴 𝐹 𝐵 ) ) | 
						
							| 19 | 16 17 18 | 3imtr3d | ⊢ ( ( 𝐹 '''' 𝐴 )  =  𝐵  →  ( 𝐵  ∈  ran  𝐹  →  𝐴 𝐹 𝐵 ) ) | 
						
							| 20 | 19 | com12 | ⊢ ( 𝐵  ∈  ran  𝐹  →  ( ( 𝐹 '''' 𝐴 )  =  𝐵  →  𝐴 𝐹 𝐵 ) ) |