Step |
Hyp |
Ref |
Expression |
1 |
|
eleq1 |
⊢ ( ( 𝐹 '''' 𝐴 ) = 𝑦 → ( ( 𝐹 '''' 𝐴 ) ∈ ran 𝐹 ↔ 𝑦 ∈ ran 𝐹 ) ) |
2 |
|
dfatafv2rnb |
⊢ ( 𝐹 defAt 𝐴 ↔ ( 𝐹 '''' 𝐴 ) ∈ ran 𝐹 ) |
3 |
|
dfdfat2 |
⊢ ( 𝐹 defAt 𝐴 ↔ ( 𝐴 ∈ dom 𝐹 ∧ ∃! 𝑦 𝐴 𝐹 𝑦 ) ) |
4 |
3
|
simprbi |
⊢ ( 𝐹 defAt 𝐴 → ∃! 𝑦 𝐴 𝐹 𝑦 ) |
5 |
2 4
|
sylbir |
⊢ ( ( 𝐹 '''' 𝐴 ) ∈ ran 𝐹 → ∃! 𝑦 𝐴 𝐹 𝑦 ) |
6 |
|
tz6.12c-afv2 |
⊢ ( ∃! 𝑦 𝐴 𝐹 𝑦 → ( ( 𝐹 '''' 𝐴 ) = 𝑦 ↔ 𝐴 𝐹 𝑦 ) ) |
7 |
5 6
|
syl |
⊢ ( ( 𝐹 '''' 𝐴 ) ∈ ran 𝐹 → ( ( 𝐹 '''' 𝐴 ) = 𝑦 ↔ 𝐴 𝐹 𝑦 ) ) |
8 |
7
|
biimpcd |
⊢ ( ( 𝐹 '''' 𝐴 ) = 𝑦 → ( ( 𝐹 '''' 𝐴 ) ∈ ran 𝐹 → 𝐴 𝐹 𝑦 ) ) |
9 |
1 8
|
sylbird |
⊢ ( ( 𝐹 '''' 𝐴 ) = 𝑦 → ( 𝑦 ∈ ran 𝐹 → 𝐴 𝐹 𝑦 ) ) |
10 |
9
|
eqcoms |
⊢ ( 𝑦 = ( 𝐹 '''' 𝐴 ) → ( 𝑦 ∈ ran 𝐹 → 𝐴 𝐹 𝑦 ) ) |
11 |
|
eleq1 |
⊢ ( 𝑦 = ( 𝐹 '''' 𝐴 ) → ( 𝑦 ∈ ran 𝐹 ↔ ( 𝐹 '''' 𝐴 ) ∈ ran 𝐹 ) ) |
12 |
|
breq2 |
⊢ ( 𝑦 = ( 𝐹 '''' 𝐴 ) → ( 𝐴 𝐹 𝑦 ↔ 𝐴 𝐹 ( 𝐹 '''' 𝐴 ) ) ) |
13 |
10 11 12
|
3imtr3d |
⊢ ( 𝑦 = ( 𝐹 '''' 𝐴 ) → ( ( 𝐹 '''' 𝐴 ) ∈ ran 𝐹 → 𝐴 𝐹 ( 𝐹 '''' 𝐴 ) ) ) |
14 |
13
|
vtocleg |
⊢ ( ( 𝐹 '''' 𝐴 ) ∈ ran 𝐹 → ( ( 𝐹 '''' 𝐴 ) ∈ ran 𝐹 → 𝐴 𝐹 ( 𝐹 '''' 𝐴 ) ) ) |
15 |
14
|
pm2.43i |
⊢ ( ( 𝐹 '''' 𝐴 ) ∈ ran 𝐹 → 𝐴 𝐹 ( 𝐹 '''' 𝐴 ) ) |
16 |
15
|
a1i |
⊢ ( ( 𝐹 '''' 𝐴 ) = 𝐵 → ( ( 𝐹 '''' 𝐴 ) ∈ ran 𝐹 → 𝐴 𝐹 ( 𝐹 '''' 𝐴 ) ) ) |
17 |
|
eleq1 |
⊢ ( ( 𝐹 '''' 𝐴 ) = 𝐵 → ( ( 𝐹 '''' 𝐴 ) ∈ ran 𝐹 ↔ 𝐵 ∈ ran 𝐹 ) ) |
18 |
|
breq2 |
⊢ ( ( 𝐹 '''' 𝐴 ) = 𝐵 → ( 𝐴 𝐹 ( 𝐹 '''' 𝐴 ) ↔ 𝐴 𝐹 𝐵 ) ) |
19 |
16 17 18
|
3imtr3d |
⊢ ( ( 𝐹 '''' 𝐴 ) = 𝐵 → ( 𝐵 ∈ ran 𝐹 → 𝐴 𝐹 𝐵 ) ) |
20 |
19
|
com12 |
⊢ ( 𝐵 ∈ ran 𝐹 → ( ( 𝐹 '''' 𝐴 ) = 𝐵 → 𝐴 𝐹 𝐵 ) ) |