Metamath Proof Explorer


Theorem tz6.12i

Description: Corollary of Theorem 6.12(2) of TakeutiZaring p. 27. (Contributed by Mario Carneiro, 17-Nov-2014)

Ref Expression
Assertion tz6.12i ( 𝐵 ≠ ∅ → ( ( 𝐹𝐴 ) = 𝐵𝐴 𝐹 𝐵 ) )

Proof

Step Hyp Ref Expression
1 fvex ( 𝐹𝐴 ) ∈ V
2 neeq1 ( ( 𝐹𝐴 ) = 𝑦 → ( ( 𝐹𝐴 ) ≠ ∅ ↔ 𝑦 ≠ ∅ ) )
3 tz6.12-2 ( ¬ ∃! 𝑦 𝐴 𝐹 𝑦 → ( 𝐹𝐴 ) = ∅ )
4 3 necon1ai ( ( 𝐹𝐴 ) ≠ ∅ → ∃! 𝑦 𝐴 𝐹 𝑦 )
5 tz6.12c ( ∃! 𝑦 𝐴 𝐹 𝑦 → ( ( 𝐹𝐴 ) = 𝑦𝐴 𝐹 𝑦 ) )
6 4 5 syl ( ( 𝐹𝐴 ) ≠ ∅ → ( ( 𝐹𝐴 ) = 𝑦𝐴 𝐹 𝑦 ) )
7 6 biimpcd ( ( 𝐹𝐴 ) = 𝑦 → ( ( 𝐹𝐴 ) ≠ ∅ → 𝐴 𝐹 𝑦 ) )
8 2 7 sylbird ( ( 𝐹𝐴 ) = 𝑦 → ( 𝑦 ≠ ∅ → 𝐴 𝐹 𝑦 ) )
9 8 eqcoms ( 𝑦 = ( 𝐹𝐴 ) → ( 𝑦 ≠ ∅ → 𝐴 𝐹 𝑦 ) )
10 neeq1 ( 𝑦 = ( 𝐹𝐴 ) → ( 𝑦 ≠ ∅ ↔ ( 𝐹𝐴 ) ≠ ∅ ) )
11 breq2 ( 𝑦 = ( 𝐹𝐴 ) → ( 𝐴 𝐹 𝑦𝐴 𝐹 ( 𝐹𝐴 ) ) )
12 9 10 11 3imtr3d ( 𝑦 = ( 𝐹𝐴 ) → ( ( 𝐹𝐴 ) ≠ ∅ → 𝐴 𝐹 ( 𝐹𝐴 ) ) )
13 1 12 vtocle ( ( 𝐹𝐴 ) ≠ ∅ → 𝐴 𝐹 ( 𝐹𝐴 ) )
14 13 a1i ( ( 𝐹𝐴 ) = 𝐵 → ( ( 𝐹𝐴 ) ≠ ∅ → 𝐴 𝐹 ( 𝐹𝐴 ) ) )
15 neeq1 ( ( 𝐹𝐴 ) = 𝐵 → ( ( 𝐹𝐴 ) ≠ ∅ ↔ 𝐵 ≠ ∅ ) )
16 breq2 ( ( 𝐹𝐴 ) = 𝐵 → ( 𝐴 𝐹 ( 𝐹𝐴 ) ↔ 𝐴 𝐹 𝐵 ) )
17 14 15 16 3imtr3d ( ( 𝐹𝐴 ) = 𝐵 → ( 𝐵 ≠ ∅ → 𝐴 𝐹 𝐵 ) )
18 17 com12 ( 𝐵 ≠ ∅ → ( ( 𝐹𝐴 ) = 𝐵𝐴 𝐹 𝐵 ) )