| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eleq1 |  |-  ( ( F '''' A ) = y -> ( ( F '''' A ) e. ran F <-> y e. ran F ) ) | 
						
							| 2 |  | dfatafv2rnb |  |-  ( F defAt A <-> ( F '''' A ) e. ran F ) | 
						
							| 3 |  | dfdfat2 |  |-  ( F defAt A <-> ( A e. dom F /\ E! y A F y ) ) | 
						
							| 4 | 3 | simprbi |  |-  ( F defAt A -> E! y A F y ) | 
						
							| 5 | 2 4 | sylbir |  |-  ( ( F '''' A ) e. ran F -> E! y A F y ) | 
						
							| 6 |  | tz6.12c-afv2 |  |-  ( E! y A F y -> ( ( F '''' A ) = y <-> A F y ) ) | 
						
							| 7 | 5 6 | syl |  |-  ( ( F '''' A ) e. ran F -> ( ( F '''' A ) = y <-> A F y ) ) | 
						
							| 8 | 7 | biimpcd |  |-  ( ( F '''' A ) = y -> ( ( F '''' A ) e. ran F -> A F y ) ) | 
						
							| 9 | 1 8 | sylbird |  |-  ( ( F '''' A ) = y -> ( y e. ran F -> A F y ) ) | 
						
							| 10 | 9 | eqcoms |  |-  ( y = ( F '''' A ) -> ( y e. ran F -> A F y ) ) | 
						
							| 11 |  | eleq1 |  |-  ( y = ( F '''' A ) -> ( y e. ran F <-> ( F '''' A ) e. ran F ) ) | 
						
							| 12 |  | breq2 |  |-  ( y = ( F '''' A ) -> ( A F y <-> A F ( F '''' A ) ) ) | 
						
							| 13 | 10 11 12 | 3imtr3d |  |-  ( y = ( F '''' A ) -> ( ( F '''' A ) e. ran F -> A F ( F '''' A ) ) ) | 
						
							| 14 | 13 | vtocleg |  |-  ( ( F '''' A ) e. ran F -> ( ( F '''' A ) e. ran F -> A F ( F '''' A ) ) ) | 
						
							| 15 | 14 | pm2.43i |  |-  ( ( F '''' A ) e. ran F -> A F ( F '''' A ) ) | 
						
							| 16 | 15 | a1i |  |-  ( ( F '''' A ) = B -> ( ( F '''' A ) e. ran F -> A F ( F '''' A ) ) ) | 
						
							| 17 |  | eleq1 |  |-  ( ( F '''' A ) = B -> ( ( F '''' A ) e. ran F <-> B e. ran F ) ) | 
						
							| 18 |  | breq2 |  |-  ( ( F '''' A ) = B -> ( A F ( F '''' A ) <-> A F B ) ) | 
						
							| 19 | 16 17 18 | 3imtr3d |  |-  ( ( F '''' A ) = B -> ( B e. ran F -> A F B ) ) | 
						
							| 20 | 19 | com12 |  |-  ( B e. ran F -> ( ( F '''' A ) = B -> A F B ) ) |