| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eleq1 |
|- ( ( F '''' A ) = y -> ( ( F '''' A ) e. ran F <-> y e. ran F ) ) |
| 2 |
|
dfatafv2rnb |
|- ( F defAt A <-> ( F '''' A ) e. ran F ) |
| 3 |
|
dfdfat2 |
|- ( F defAt A <-> ( A e. dom F /\ E! y A F y ) ) |
| 4 |
3
|
simprbi |
|- ( F defAt A -> E! y A F y ) |
| 5 |
2 4
|
sylbir |
|- ( ( F '''' A ) e. ran F -> E! y A F y ) |
| 6 |
|
tz6.12c-afv2 |
|- ( E! y A F y -> ( ( F '''' A ) = y <-> A F y ) ) |
| 7 |
5 6
|
syl |
|- ( ( F '''' A ) e. ran F -> ( ( F '''' A ) = y <-> A F y ) ) |
| 8 |
7
|
biimpcd |
|- ( ( F '''' A ) = y -> ( ( F '''' A ) e. ran F -> A F y ) ) |
| 9 |
1 8
|
sylbird |
|- ( ( F '''' A ) = y -> ( y e. ran F -> A F y ) ) |
| 10 |
9
|
eqcoms |
|- ( y = ( F '''' A ) -> ( y e. ran F -> A F y ) ) |
| 11 |
|
eleq1 |
|- ( y = ( F '''' A ) -> ( y e. ran F <-> ( F '''' A ) e. ran F ) ) |
| 12 |
|
breq2 |
|- ( y = ( F '''' A ) -> ( A F y <-> A F ( F '''' A ) ) ) |
| 13 |
10 11 12
|
3imtr3d |
|- ( y = ( F '''' A ) -> ( ( F '''' A ) e. ran F -> A F ( F '''' A ) ) ) |
| 14 |
13
|
vtocleg |
|- ( ( F '''' A ) e. ran F -> ( ( F '''' A ) e. ran F -> A F ( F '''' A ) ) ) |
| 15 |
14
|
pm2.43i |
|- ( ( F '''' A ) e. ran F -> A F ( F '''' A ) ) |
| 16 |
15
|
a1i |
|- ( ( F '''' A ) = B -> ( ( F '''' A ) e. ran F -> A F ( F '''' A ) ) ) |
| 17 |
|
eleq1 |
|- ( ( F '''' A ) = B -> ( ( F '''' A ) e. ran F <-> B e. ran F ) ) |
| 18 |
|
breq2 |
|- ( ( F '''' A ) = B -> ( A F ( F '''' A ) <-> A F B ) ) |
| 19 |
16 17 18
|
3imtr3d |
|- ( ( F '''' A ) = B -> ( B e. ran F -> A F B ) ) |
| 20 |
19
|
com12 |
|- ( B e. ran F -> ( ( F '''' A ) = B -> A F B ) ) |