Metamath Proof Explorer


Theorem tz6.12i-afv2

Description: Corollary of Theorem 6.12(2) of TakeutiZaring p. 27. analogous to tz6.12i . (Contributed by AV, 5-Sep-2022)

Ref Expression
Assertion tz6.12i-afv2
|- ( B e. ran F -> ( ( F '''' A ) = B -> A F B ) )

Proof

Step Hyp Ref Expression
1 eleq1
 |-  ( ( F '''' A ) = y -> ( ( F '''' A ) e. ran F <-> y e. ran F ) )
2 dfatafv2rnb
 |-  ( F defAt A <-> ( F '''' A ) e. ran F )
3 dfdfat2
 |-  ( F defAt A <-> ( A e. dom F /\ E! y A F y ) )
4 3 simprbi
 |-  ( F defAt A -> E! y A F y )
5 2 4 sylbir
 |-  ( ( F '''' A ) e. ran F -> E! y A F y )
6 tz6.12c-afv2
 |-  ( E! y A F y -> ( ( F '''' A ) = y <-> A F y ) )
7 5 6 syl
 |-  ( ( F '''' A ) e. ran F -> ( ( F '''' A ) = y <-> A F y ) )
8 7 biimpcd
 |-  ( ( F '''' A ) = y -> ( ( F '''' A ) e. ran F -> A F y ) )
9 1 8 sylbird
 |-  ( ( F '''' A ) = y -> ( y e. ran F -> A F y ) )
10 9 eqcoms
 |-  ( y = ( F '''' A ) -> ( y e. ran F -> A F y ) )
11 eleq1
 |-  ( y = ( F '''' A ) -> ( y e. ran F <-> ( F '''' A ) e. ran F ) )
12 breq2
 |-  ( y = ( F '''' A ) -> ( A F y <-> A F ( F '''' A ) ) )
13 10 11 12 3imtr3d
 |-  ( y = ( F '''' A ) -> ( ( F '''' A ) e. ran F -> A F ( F '''' A ) ) )
14 13 vtocleg
 |-  ( ( F '''' A ) e. ran F -> ( ( F '''' A ) e. ran F -> A F ( F '''' A ) ) )
15 14 pm2.43i
 |-  ( ( F '''' A ) e. ran F -> A F ( F '''' A ) )
16 15 a1i
 |-  ( ( F '''' A ) = B -> ( ( F '''' A ) e. ran F -> A F ( F '''' A ) ) )
17 eleq1
 |-  ( ( F '''' A ) = B -> ( ( F '''' A ) e. ran F <-> B e. ran F ) )
18 breq2
 |-  ( ( F '''' A ) = B -> ( A F ( F '''' A ) <-> A F B ) )
19 16 17 18 3imtr3d
 |-  ( ( F '''' A ) = B -> ( B e. ran F -> A F B ) )
20 19 com12
 |-  ( B e. ran F -> ( ( F '''' A ) = B -> A F B ) )