| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simpllr |  |-  ( ( ( ( A e. V /\ B e. W ) /\ Fun ( F |` { A } ) ) /\ A F B ) -> B e. W ) | 
						
							| 2 |  | eleq1 |  |-  ( x = B -> ( x e. W <-> B e. W ) ) | 
						
							| 3 | 2 | anbi2d |  |-  ( x = B -> ( ( A e. V /\ x e. W ) <-> ( A e. V /\ B e. W ) ) ) | 
						
							| 4 | 3 | anbi1d |  |-  ( x = B -> ( ( ( A e. V /\ x e. W ) /\ Fun ( F |` { A } ) ) <-> ( ( A e. V /\ B e. W ) /\ Fun ( F |` { A } ) ) ) ) | 
						
							| 5 |  | breq2 |  |-  ( x = B -> ( A F x <-> A F B ) ) | 
						
							| 6 | 4 5 | anbi12d |  |-  ( x = B -> ( ( ( ( A e. V /\ x e. W ) /\ Fun ( F |` { A } ) ) /\ A F x ) <-> ( ( ( A e. V /\ B e. W ) /\ Fun ( F |` { A } ) ) /\ A F B ) ) ) | 
						
							| 7 |  | eqeq2 |  |-  ( x = B -> ( ( F '''' A ) = x <-> ( F '''' A ) = B ) ) | 
						
							| 8 | 6 7 | imbi12d |  |-  ( x = B -> ( ( ( ( ( A e. V /\ x e. W ) /\ Fun ( F |` { A } ) ) /\ A F x ) -> ( F '''' A ) = x ) <-> ( ( ( ( A e. V /\ B e. W ) /\ Fun ( F |` { A } ) ) /\ A F B ) -> ( F '''' A ) = B ) ) ) | 
						
							| 9 |  | id |  |-  ( A F x -> A F x ) | 
						
							| 10 |  | funressneu |  |-  ( ( ( A e. V /\ x e. W ) /\ Fun ( F |` { A } ) /\ A F x ) -> E! x A F x ) | 
						
							| 11 | 10 | 3expa |  |-  ( ( ( ( A e. V /\ x e. W ) /\ Fun ( F |` { A } ) ) /\ A F x ) -> E! x A F x ) | 
						
							| 12 |  | tz6.12-1-afv2 |  |-  ( ( A F x /\ E! x A F x ) -> ( F '''' A ) = x ) | 
						
							| 13 | 9 11 12 | syl2an2 |  |-  ( ( ( ( A e. V /\ x e. W ) /\ Fun ( F |` { A } ) ) /\ A F x ) -> ( F '''' A ) = x ) | 
						
							| 14 | 8 13 | vtoclg |  |-  ( B e. W -> ( ( ( ( A e. V /\ B e. W ) /\ Fun ( F |` { A } ) ) /\ A F B ) -> ( F '''' A ) = B ) ) | 
						
							| 15 | 1 14 | mpcom |  |-  ( ( ( ( A e. V /\ B e. W ) /\ Fun ( F |` { A } ) ) /\ A F B ) -> ( F '''' A ) = B ) | 
						
							| 16 | 15 | ex |  |-  ( ( ( A e. V /\ B e. W ) /\ Fun ( F |` { A } ) ) -> ( A F B -> ( F '''' A ) = B ) ) |