Step |
Hyp |
Ref |
Expression |
1 |
|
simpllr |
|- ( ( ( ( A e. V /\ B e. W ) /\ Fun ( F |` { A } ) ) /\ A F B ) -> B e. W ) |
2 |
|
eleq1 |
|- ( x = B -> ( x e. W <-> B e. W ) ) |
3 |
2
|
anbi2d |
|- ( x = B -> ( ( A e. V /\ x e. W ) <-> ( A e. V /\ B e. W ) ) ) |
4 |
3
|
anbi1d |
|- ( x = B -> ( ( ( A e. V /\ x e. W ) /\ Fun ( F |` { A } ) ) <-> ( ( A e. V /\ B e. W ) /\ Fun ( F |` { A } ) ) ) ) |
5 |
|
breq2 |
|- ( x = B -> ( A F x <-> A F B ) ) |
6 |
4 5
|
anbi12d |
|- ( x = B -> ( ( ( ( A e. V /\ x e. W ) /\ Fun ( F |` { A } ) ) /\ A F x ) <-> ( ( ( A e. V /\ B e. W ) /\ Fun ( F |` { A } ) ) /\ A F B ) ) ) |
7 |
|
eqeq2 |
|- ( x = B -> ( ( F '''' A ) = x <-> ( F '''' A ) = B ) ) |
8 |
6 7
|
imbi12d |
|- ( x = B -> ( ( ( ( ( A e. V /\ x e. W ) /\ Fun ( F |` { A } ) ) /\ A F x ) -> ( F '''' A ) = x ) <-> ( ( ( ( A e. V /\ B e. W ) /\ Fun ( F |` { A } ) ) /\ A F B ) -> ( F '''' A ) = B ) ) ) |
9 |
|
id |
|- ( A F x -> A F x ) |
10 |
|
funressneu |
|- ( ( ( A e. V /\ x e. W ) /\ Fun ( F |` { A } ) /\ A F x ) -> E! x A F x ) |
11 |
10
|
3expa |
|- ( ( ( ( A e. V /\ x e. W ) /\ Fun ( F |` { A } ) ) /\ A F x ) -> E! x A F x ) |
12 |
|
tz6.12-1-afv2 |
|- ( ( A F x /\ E! x A F x ) -> ( F '''' A ) = x ) |
13 |
9 11 12
|
syl2an2 |
|- ( ( ( ( A e. V /\ x e. W ) /\ Fun ( F |` { A } ) ) /\ A F x ) -> ( F '''' A ) = x ) |
14 |
8 13
|
vtoclg |
|- ( B e. W -> ( ( ( ( A e. V /\ B e. W ) /\ Fun ( F |` { A } ) ) /\ A F B ) -> ( F '''' A ) = B ) ) |
15 |
1 14
|
mpcom |
|- ( ( ( ( A e. V /\ B e. W ) /\ Fun ( F |` { A } ) ) /\ A F B ) -> ( F '''' A ) = B ) |
16 |
15
|
ex |
|- ( ( ( A e. V /\ B e. W ) /\ Fun ( F |` { A } ) ) -> ( A F B -> ( F '''' A ) = B ) ) |