Metamath Proof Explorer


Theorem funressnbrafv2

Description: The second argument of a binary relation on a function is the function's value, analogous to funbrfv . (Contributed by AV, 7-Sep-2022)

Ref Expression
Assertion funressnbrafv2
|- ( ( ( A e. V /\ B e. W ) /\ Fun ( F |` { A } ) ) -> ( A F B -> ( F '''' A ) = B ) )

Proof

Step Hyp Ref Expression
1 simpllr
 |-  ( ( ( ( A e. V /\ B e. W ) /\ Fun ( F |` { A } ) ) /\ A F B ) -> B e. W )
2 eleq1
 |-  ( x = B -> ( x e. W <-> B e. W ) )
3 2 anbi2d
 |-  ( x = B -> ( ( A e. V /\ x e. W ) <-> ( A e. V /\ B e. W ) ) )
4 3 anbi1d
 |-  ( x = B -> ( ( ( A e. V /\ x e. W ) /\ Fun ( F |` { A } ) ) <-> ( ( A e. V /\ B e. W ) /\ Fun ( F |` { A } ) ) ) )
5 breq2
 |-  ( x = B -> ( A F x <-> A F B ) )
6 4 5 anbi12d
 |-  ( x = B -> ( ( ( ( A e. V /\ x e. W ) /\ Fun ( F |` { A } ) ) /\ A F x ) <-> ( ( ( A e. V /\ B e. W ) /\ Fun ( F |` { A } ) ) /\ A F B ) ) )
7 eqeq2
 |-  ( x = B -> ( ( F '''' A ) = x <-> ( F '''' A ) = B ) )
8 6 7 imbi12d
 |-  ( x = B -> ( ( ( ( ( A e. V /\ x e. W ) /\ Fun ( F |` { A } ) ) /\ A F x ) -> ( F '''' A ) = x ) <-> ( ( ( ( A e. V /\ B e. W ) /\ Fun ( F |` { A } ) ) /\ A F B ) -> ( F '''' A ) = B ) ) )
9 id
 |-  ( A F x -> A F x )
10 funressneu
 |-  ( ( ( A e. V /\ x e. W ) /\ Fun ( F |` { A } ) /\ A F x ) -> E! x A F x )
11 10 3expa
 |-  ( ( ( ( A e. V /\ x e. W ) /\ Fun ( F |` { A } ) ) /\ A F x ) -> E! x A F x )
12 tz6.12-1-afv2
 |-  ( ( A F x /\ E! x A F x ) -> ( F '''' A ) = x )
13 9 11 12 syl2an2
 |-  ( ( ( ( A e. V /\ x e. W ) /\ Fun ( F |` { A } ) ) /\ A F x ) -> ( F '''' A ) = x )
14 8 13 vtoclg
 |-  ( B e. W -> ( ( ( ( A e. V /\ B e. W ) /\ Fun ( F |` { A } ) ) /\ A F B ) -> ( F '''' A ) = B ) )
15 1 14 mpcom
 |-  ( ( ( ( A e. V /\ B e. W ) /\ Fun ( F |` { A } ) ) /\ A F B ) -> ( F '''' A ) = B )
16 15 ex
 |-  ( ( ( A e. V /\ B e. W ) /\ Fun ( F |` { A } ) ) -> ( A F B -> ( F '''' A ) = B ) )