Metamath Proof Explorer


Theorem funressnbrafv2

Description: The second argument of a binary relation on a function is the function's value, analogous to funbrfv . (Contributed by AV, 7-Sep-2022)

Ref Expression
Assertion funressnbrafv2 A V B W Fun F A A F B F '''' A = B

Proof

Step Hyp Ref Expression
1 simpllr A V B W Fun F A A F B B W
2 eleq1 x = B x W B W
3 2 anbi2d x = B A V x W A V B W
4 3 anbi1d x = B A V x W Fun F A A V B W Fun F A
5 breq2 x = B A F x A F B
6 4 5 anbi12d x = B A V x W Fun F A A F x A V B W Fun F A A F B
7 eqeq2 x = B F '''' A = x F '''' A = B
8 6 7 imbi12d x = B A V x W Fun F A A F x F '''' A = x A V B W Fun F A A F B F '''' A = B
9 id A F x A F x
10 funressneu A V x W Fun F A A F x ∃! x A F x
11 10 3expa A V x W Fun F A A F x ∃! x A F x
12 tz6.12-1-afv2 A F x ∃! x A F x F '''' A = x
13 9 11 12 syl2an2 A V x W Fun F A A F x F '''' A = x
14 8 13 vtoclg B W A V B W Fun F A A F B F '''' A = B
15 1 14 mpcom A V B W Fun F A A F B F '''' A = B
16 15 ex A V B W Fun F A A F B F '''' A = B