Step |
Hyp |
Ref |
Expression |
1 |
|
eqid |
|- ( F '''' A ) = ( F '''' A ) |
2 |
|
dfatafv2ex |
|- ( F defAt A -> ( F '''' A ) e. _V ) |
3 |
2
|
adantr |
|- ( ( F defAt A /\ B e. W ) -> ( F '''' A ) e. _V ) |
4 |
|
eqeq2 |
|- ( x = ( F '''' A ) -> ( ( F '''' A ) = x <-> ( F '''' A ) = ( F '''' A ) ) ) |
5 |
|
breq2 |
|- ( x = ( F '''' A ) -> ( A F x <-> A F ( F '''' A ) ) ) |
6 |
4 5
|
bibi12d |
|- ( x = ( F '''' A ) -> ( ( ( F '''' A ) = x <-> A F x ) <-> ( ( F '''' A ) = ( F '''' A ) <-> A F ( F '''' A ) ) ) ) |
7 |
6
|
adantl |
|- ( ( ( F defAt A /\ B e. W ) /\ x = ( F '''' A ) ) -> ( ( ( F '''' A ) = x <-> A F x ) <-> ( ( F '''' A ) = ( F '''' A ) <-> A F ( F '''' A ) ) ) ) |
8 |
|
dfdfat2 |
|- ( F defAt A <-> ( A e. dom F /\ E! x A F x ) ) |
9 |
|
tz6.12c-afv2 |
|- ( E! x A F x -> ( ( F '''' A ) = x <-> A F x ) ) |
10 |
8 9
|
simplbiim |
|- ( F defAt A -> ( ( F '''' A ) = x <-> A F x ) ) |
11 |
10
|
adantr |
|- ( ( F defAt A /\ B e. W ) -> ( ( F '''' A ) = x <-> A F x ) ) |
12 |
3 7 11
|
vtocld |
|- ( ( F defAt A /\ B e. W ) -> ( ( F '''' A ) = ( F '''' A ) <-> A F ( F '''' A ) ) ) |
13 |
1 12
|
mpbii |
|- ( ( F defAt A /\ B e. W ) -> A F ( F '''' A ) ) |
14 |
|
breq2 |
|- ( ( F '''' A ) = B -> ( A F ( F '''' A ) <-> A F B ) ) |
15 |
13 14
|
syl5ibcom |
|- ( ( F defAt A /\ B e. W ) -> ( ( F '''' A ) = B -> A F B ) ) |
16 |
|
df-dfat |
|- ( F defAt A <-> ( A e. dom F /\ Fun ( F |` { A } ) ) ) |
17 |
|
simpll |
|- ( ( ( A e. dom F /\ Fun ( F |` { A } ) ) /\ B e. W ) -> A e. dom F ) |
18 |
|
simpr |
|- ( ( ( A e. dom F /\ Fun ( F |` { A } ) ) /\ B e. W ) -> B e. W ) |
19 |
|
simpr |
|- ( ( A e. dom F /\ Fun ( F |` { A } ) ) -> Fun ( F |` { A } ) ) |
20 |
19
|
adantr |
|- ( ( ( A e. dom F /\ Fun ( F |` { A } ) ) /\ B e. W ) -> Fun ( F |` { A } ) ) |
21 |
17 18 20
|
jca31 |
|- ( ( ( A e. dom F /\ Fun ( F |` { A } ) ) /\ B e. W ) -> ( ( A e. dom F /\ B e. W ) /\ Fun ( F |` { A } ) ) ) |
22 |
16 21
|
sylanb |
|- ( ( F defAt A /\ B e. W ) -> ( ( A e. dom F /\ B e. W ) /\ Fun ( F |` { A } ) ) ) |
23 |
|
funressnbrafv2 |
|- ( ( ( A e. dom F /\ B e. W ) /\ Fun ( F |` { A } ) ) -> ( A F B -> ( F '''' A ) = B ) ) |
24 |
22 23
|
syl |
|- ( ( F defAt A /\ B e. W ) -> ( A F B -> ( F '''' A ) = B ) ) |
25 |
15 24
|
impbid |
|- ( ( F defAt A /\ B e. W ) -> ( ( F '''' A ) = B <-> A F B ) ) |