| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eqid |  |-  ( F '''' A ) = ( F '''' A ) | 
						
							| 2 |  | dfatafv2ex |  |-  ( F defAt A -> ( F '''' A ) e. _V ) | 
						
							| 3 | 2 | adantr |  |-  ( ( F defAt A /\ B e. W ) -> ( F '''' A ) e. _V ) | 
						
							| 4 |  | eqeq2 |  |-  ( x = ( F '''' A ) -> ( ( F '''' A ) = x <-> ( F '''' A ) = ( F '''' A ) ) ) | 
						
							| 5 |  | breq2 |  |-  ( x = ( F '''' A ) -> ( A F x <-> A F ( F '''' A ) ) ) | 
						
							| 6 | 4 5 | bibi12d |  |-  ( x = ( F '''' A ) -> ( ( ( F '''' A ) = x <-> A F x ) <-> ( ( F '''' A ) = ( F '''' A ) <-> A F ( F '''' A ) ) ) ) | 
						
							| 7 | 6 | adantl |  |-  ( ( ( F defAt A /\ B e. W ) /\ x = ( F '''' A ) ) -> ( ( ( F '''' A ) = x <-> A F x ) <-> ( ( F '''' A ) = ( F '''' A ) <-> A F ( F '''' A ) ) ) ) | 
						
							| 8 |  | dfdfat2 |  |-  ( F defAt A <-> ( A e. dom F /\ E! x A F x ) ) | 
						
							| 9 |  | tz6.12c-afv2 |  |-  ( E! x A F x -> ( ( F '''' A ) = x <-> A F x ) ) | 
						
							| 10 | 8 9 | simplbiim |  |-  ( F defAt A -> ( ( F '''' A ) = x <-> A F x ) ) | 
						
							| 11 | 10 | adantr |  |-  ( ( F defAt A /\ B e. W ) -> ( ( F '''' A ) = x <-> A F x ) ) | 
						
							| 12 | 3 7 11 | vtocld |  |-  ( ( F defAt A /\ B e. W ) -> ( ( F '''' A ) = ( F '''' A ) <-> A F ( F '''' A ) ) ) | 
						
							| 13 | 1 12 | mpbii |  |-  ( ( F defAt A /\ B e. W ) -> A F ( F '''' A ) ) | 
						
							| 14 |  | breq2 |  |-  ( ( F '''' A ) = B -> ( A F ( F '''' A ) <-> A F B ) ) | 
						
							| 15 | 13 14 | syl5ibcom |  |-  ( ( F defAt A /\ B e. W ) -> ( ( F '''' A ) = B -> A F B ) ) | 
						
							| 16 |  | df-dfat |  |-  ( F defAt A <-> ( A e. dom F /\ Fun ( F |` { A } ) ) ) | 
						
							| 17 |  | simpll |  |-  ( ( ( A e. dom F /\ Fun ( F |` { A } ) ) /\ B e. W ) -> A e. dom F ) | 
						
							| 18 |  | simpr |  |-  ( ( ( A e. dom F /\ Fun ( F |` { A } ) ) /\ B e. W ) -> B e. W ) | 
						
							| 19 |  | simpr |  |-  ( ( A e. dom F /\ Fun ( F |` { A } ) ) -> Fun ( F |` { A } ) ) | 
						
							| 20 | 19 | adantr |  |-  ( ( ( A e. dom F /\ Fun ( F |` { A } ) ) /\ B e. W ) -> Fun ( F |` { A } ) ) | 
						
							| 21 | 17 18 20 | jca31 |  |-  ( ( ( A e. dom F /\ Fun ( F |` { A } ) ) /\ B e. W ) -> ( ( A e. dom F /\ B e. W ) /\ Fun ( F |` { A } ) ) ) | 
						
							| 22 | 16 21 | sylanb |  |-  ( ( F defAt A /\ B e. W ) -> ( ( A e. dom F /\ B e. W ) /\ Fun ( F |` { A } ) ) ) | 
						
							| 23 |  | funressnbrafv2 |  |-  ( ( ( A e. dom F /\ B e. W ) /\ Fun ( F |` { A } ) ) -> ( A F B -> ( F '''' A ) = B ) ) | 
						
							| 24 | 22 23 | syl |  |-  ( ( F defAt A /\ B e. W ) -> ( A F B -> ( F '''' A ) = B ) ) | 
						
							| 25 | 15 24 | impbid |  |-  ( ( F defAt A /\ B e. W ) -> ( ( F '''' A ) = B <-> A F B ) ) |