| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eqid | ⊢ ( 𝐹 '''' 𝐴 )  =  ( 𝐹 '''' 𝐴 ) | 
						
							| 2 |  | dfatafv2ex | ⊢ ( 𝐹  defAt  𝐴  →  ( 𝐹 '''' 𝐴 )  ∈  V ) | 
						
							| 3 | 2 | adantr | ⊢ ( ( 𝐹  defAt  𝐴  ∧  𝐵  ∈  𝑊 )  →  ( 𝐹 '''' 𝐴 )  ∈  V ) | 
						
							| 4 |  | eqeq2 | ⊢ ( 𝑥  =  ( 𝐹 '''' 𝐴 )  →  ( ( 𝐹 '''' 𝐴 )  =  𝑥  ↔  ( 𝐹 '''' 𝐴 )  =  ( 𝐹 '''' 𝐴 ) ) ) | 
						
							| 5 |  | breq2 | ⊢ ( 𝑥  =  ( 𝐹 '''' 𝐴 )  →  ( 𝐴 𝐹 𝑥  ↔  𝐴 𝐹 ( 𝐹 '''' 𝐴 ) ) ) | 
						
							| 6 | 4 5 | bibi12d | ⊢ ( 𝑥  =  ( 𝐹 '''' 𝐴 )  →  ( ( ( 𝐹 '''' 𝐴 )  =  𝑥  ↔  𝐴 𝐹 𝑥 )  ↔  ( ( 𝐹 '''' 𝐴 )  =  ( 𝐹 '''' 𝐴 )  ↔  𝐴 𝐹 ( 𝐹 '''' 𝐴 ) ) ) ) | 
						
							| 7 | 6 | adantl | ⊢ ( ( ( 𝐹  defAt  𝐴  ∧  𝐵  ∈  𝑊 )  ∧  𝑥  =  ( 𝐹 '''' 𝐴 ) )  →  ( ( ( 𝐹 '''' 𝐴 )  =  𝑥  ↔  𝐴 𝐹 𝑥 )  ↔  ( ( 𝐹 '''' 𝐴 )  =  ( 𝐹 '''' 𝐴 )  ↔  𝐴 𝐹 ( 𝐹 '''' 𝐴 ) ) ) ) | 
						
							| 8 |  | dfdfat2 | ⊢ ( 𝐹  defAt  𝐴  ↔  ( 𝐴  ∈  dom  𝐹  ∧  ∃! 𝑥 𝐴 𝐹 𝑥 ) ) | 
						
							| 9 |  | tz6.12c-afv2 | ⊢ ( ∃! 𝑥 𝐴 𝐹 𝑥  →  ( ( 𝐹 '''' 𝐴 )  =  𝑥  ↔  𝐴 𝐹 𝑥 ) ) | 
						
							| 10 | 8 9 | simplbiim | ⊢ ( 𝐹  defAt  𝐴  →  ( ( 𝐹 '''' 𝐴 )  =  𝑥  ↔  𝐴 𝐹 𝑥 ) ) | 
						
							| 11 | 10 | adantr | ⊢ ( ( 𝐹  defAt  𝐴  ∧  𝐵  ∈  𝑊 )  →  ( ( 𝐹 '''' 𝐴 )  =  𝑥  ↔  𝐴 𝐹 𝑥 ) ) | 
						
							| 12 | 3 7 11 | vtocld | ⊢ ( ( 𝐹  defAt  𝐴  ∧  𝐵  ∈  𝑊 )  →  ( ( 𝐹 '''' 𝐴 )  =  ( 𝐹 '''' 𝐴 )  ↔  𝐴 𝐹 ( 𝐹 '''' 𝐴 ) ) ) | 
						
							| 13 | 1 12 | mpbii | ⊢ ( ( 𝐹  defAt  𝐴  ∧  𝐵  ∈  𝑊 )  →  𝐴 𝐹 ( 𝐹 '''' 𝐴 ) ) | 
						
							| 14 |  | breq2 | ⊢ ( ( 𝐹 '''' 𝐴 )  =  𝐵  →  ( 𝐴 𝐹 ( 𝐹 '''' 𝐴 )  ↔  𝐴 𝐹 𝐵 ) ) | 
						
							| 15 | 13 14 | syl5ibcom | ⊢ ( ( 𝐹  defAt  𝐴  ∧  𝐵  ∈  𝑊 )  →  ( ( 𝐹 '''' 𝐴 )  =  𝐵  →  𝐴 𝐹 𝐵 ) ) | 
						
							| 16 |  | df-dfat | ⊢ ( 𝐹  defAt  𝐴  ↔  ( 𝐴  ∈  dom  𝐹  ∧  Fun  ( 𝐹  ↾  { 𝐴 } ) ) ) | 
						
							| 17 |  | simpll | ⊢ ( ( ( 𝐴  ∈  dom  𝐹  ∧  Fun  ( 𝐹  ↾  { 𝐴 } ) )  ∧  𝐵  ∈  𝑊 )  →  𝐴  ∈  dom  𝐹 ) | 
						
							| 18 |  | simpr | ⊢ ( ( ( 𝐴  ∈  dom  𝐹  ∧  Fun  ( 𝐹  ↾  { 𝐴 } ) )  ∧  𝐵  ∈  𝑊 )  →  𝐵  ∈  𝑊 ) | 
						
							| 19 |  | simpr | ⊢ ( ( 𝐴  ∈  dom  𝐹  ∧  Fun  ( 𝐹  ↾  { 𝐴 } ) )  →  Fun  ( 𝐹  ↾  { 𝐴 } ) ) | 
						
							| 20 | 19 | adantr | ⊢ ( ( ( 𝐴  ∈  dom  𝐹  ∧  Fun  ( 𝐹  ↾  { 𝐴 } ) )  ∧  𝐵  ∈  𝑊 )  →  Fun  ( 𝐹  ↾  { 𝐴 } ) ) | 
						
							| 21 | 17 18 20 | jca31 | ⊢ ( ( ( 𝐴  ∈  dom  𝐹  ∧  Fun  ( 𝐹  ↾  { 𝐴 } ) )  ∧  𝐵  ∈  𝑊 )  →  ( ( 𝐴  ∈  dom  𝐹  ∧  𝐵  ∈  𝑊 )  ∧  Fun  ( 𝐹  ↾  { 𝐴 } ) ) ) | 
						
							| 22 | 16 21 | sylanb | ⊢ ( ( 𝐹  defAt  𝐴  ∧  𝐵  ∈  𝑊 )  →  ( ( 𝐴  ∈  dom  𝐹  ∧  𝐵  ∈  𝑊 )  ∧  Fun  ( 𝐹  ↾  { 𝐴 } ) ) ) | 
						
							| 23 |  | funressnbrafv2 | ⊢ ( ( ( 𝐴  ∈  dom  𝐹  ∧  𝐵  ∈  𝑊 )  ∧  Fun  ( 𝐹  ↾  { 𝐴 } ) )  →  ( 𝐴 𝐹 𝐵  →  ( 𝐹 '''' 𝐴 )  =  𝐵 ) ) | 
						
							| 24 | 22 23 | syl | ⊢ ( ( 𝐹  defAt  𝐴  ∧  𝐵  ∈  𝑊 )  →  ( 𝐴 𝐹 𝐵  →  ( 𝐹 '''' 𝐴 )  =  𝐵 ) ) | 
						
							| 25 | 15 24 | impbid | ⊢ ( ( 𝐹  defAt  𝐴  ∧  𝐵  ∈  𝑊 )  →  ( ( 𝐹 '''' 𝐴 )  =  𝐵  ↔  𝐴 𝐹 𝐵 ) ) |