Step |
Hyp |
Ref |
Expression |
1 |
|
eqid |
⊢ ( 𝐹 '''' 𝐴 ) = ( 𝐹 '''' 𝐴 ) |
2 |
|
dfatafv2ex |
⊢ ( 𝐹 defAt 𝐴 → ( 𝐹 '''' 𝐴 ) ∈ V ) |
3 |
2
|
adantr |
⊢ ( ( 𝐹 defAt 𝐴 ∧ 𝐵 ∈ 𝑊 ) → ( 𝐹 '''' 𝐴 ) ∈ V ) |
4 |
|
eqeq2 |
⊢ ( 𝑥 = ( 𝐹 '''' 𝐴 ) → ( ( 𝐹 '''' 𝐴 ) = 𝑥 ↔ ( 𝐹 '''' 𝐴 ) = ( 𝐹 '''' 𝐴 ) ) ) |
5 |
|
breq2 |
⊢ ( 𝑥 = ( 𝐹 '''' 𝐴 ) → ( 𝐴 𝐹 𝑥 ↔ 𝐴 𝐹 ( 𝐹 '''' 𝐴 ) ) ) |
6 |
4 5
|
bibi12d |
⊢ ( 𝑥 = ( 𝐹 '''' 𝐴 ) → ( ( ( 𝐹 '''' 𝐴 ) = 𝑥 ↔ 𝐴 𝐹 𝑥 ) ↔ ( ( 𝐹 '''' 𝐴 ) = ( 𝐹 '''' 𝐴 ) ↔ 𝐴 𝐹 ( 𝐹 '''' 𝐴 ) ) ) ) |
7 |
6
|
adantl |
⊢ ( ( ( 𝐹 defAt 𝐴 ∧ 𝐵 ∈ 𝑊 ) ∧ 𝑥 = ( 𝐹 '''' 𝐴 ) ) → ( ( ( 𝐹 '''' 𝐴 ) = 𝑥 ↔ 𝐴 𝐹 𝑥 ) ↔ ( ( 𝐹 '''' 𝐴 ) = ( 𝐹 '''' 𝐴 ) ↔ 𝐴 𝐹 ( 𝐹 '''' 𝐴 ) ) ) ) |
8 |
|
dfdfat2 |
⊢ ( 𝐹 defAt 𝐴 ↔ ( 𝐴 ∈ dom 𝐹 ∧ ∃! 𝑥 𝐴 𝐹 𝑥 ) ) |
9 |
|
tz6.12c-afv2 |
⊢ ( ∃! 𝑥 𝐴 𝐹 𝑥 → ( ( 𝐹 '''' 𝐴 ) = 𝑥 ↔ 𝐴 𝐹 𝑥 ) ) |
10 |
8 9
|
simplbiim |
⊢ ( 𝐹 defAt 𝐴 → ( ( 𝐹 '''' 𝐴 ) = 𝑥 ↔ 𝐴 𝐹 𝑥 ) ) |
11 |
10
|
adantr |
⊢ ( ( 𝐹 defAt 𝐴 ∧ 𝐵 ∈ 𝑊 ) → ( ( 𝐹 '''' 𝐴 ) = 𝑥 ↔ 𝐴 𝐹 𝑥 ) ) |
12 |
3 7 11
|
vtocld |
⊢ ( ( 𝐹 defAt 𝐴 ∧ 𝐵 ∈ 𝑊 ) → ( ( 𝐹 '''' 𝐴 ) = ( 𝐹 '''' 𝐴 ) ↔ 𝐴 𝐹 ( 𝐹 '''' 𝐴 ) ) ) |
13 |
1 12
|
mpbii |
⊢ ( ( 𝐹 defAt 𝐴 ∧ 𝐵 ∈ 𝑊 ) → 𝐴 𝐹 ( 𝐹 '''' 𝐴 ) ) |
14 |
|
breq2 |
⊢ ( ( 𝐹 '''' 𝐴 ) = 𝐵 → ( 𝐴 𝐹 ( 𝐹 '''' 𝐴 ) ↔ 𝐴 𝐹 𝐵 ) ) |
15 |
13 14
|
syl5ibcom |
⊢ ( ( 𝐹 defAt 𝐴 ∧ 𝐵 ∈ 𝑊 ) → ( ( 𝐹 '''' 𝐴 ) = 𝐵 → 𝐴 𝐹 𝐵 ) ) |
16 |
|
df-dfat |
⊢ ( 𝐹 defAt 𝐴 ↔ ( 𝐴 ∈ dom 𝐹 ∧ Fun ( 𝐹 ↾ { 𝐴 } ) ) ) |
17 |
|
simpll |
⊢ ( ( ( 𝐴 ∈ dom 𝐹 ∧ Fun ( 𝐹 ↾ { 𝐴 } ) ) ∧ 𝐵 ∈ 𝑊 ) → 𝐴 ∈ dom 𝐹 ) |
18 |
|
simpr |
⊢ ( ( ( 𝐴 ∈ dom 𝐹 ∧ Fun ( 𝐹 ↾ { 𝐴 } ) ) ∧ 𝐵 ∈ 𝑊 ) → 𝐵 ∈ 𝑊 ) |
19 |
|
simpr |
⊢ ( ( 𝐴 ∈ dom 𝐹 ∧ Fun ( 𝐹 ↾ { 𝐴 } ) ) → Fun ( 𝐹 ↾ { 𝐴 } ) ) |
20 |
19
|
adantr |
⊢ ( ( ( 𝐴 ∈ dom 𝐹 ∧ Fun ( 𝐹 ↾ { 𝐴 } ) ) ∧ 𝐵 ∈ 𝑊 ) → Fun ( 𝐹 ↾ { 𝐴 } ) ) |
21 |
17 18 20
|
jca31 |
⊢ ( ( ( 𝐴 ∈ dom 𝐹 ∧ Fun ( 𝐹 ↾ { 𝐴 } ) ) ∧ 𝐵 ∈ 𝑊 ) → ( ( 𝐴 ∈ dom 𝐹 ∧ 𝐵 ∈ 𝑊 ) ∧ Fun ( 𝐹 ↾ { 𝐴 } ) ) ) |
22 |
16 21
|
sylanb |
⊢ ( ( 𝐹 defAt 𝐴 ∧ 𝐵 ∈ 𝑊 ) → ( ( 𝐴 ∈ dom 𝐹 ∧ 𝐵 ∈ 𝑊 ) ∧ Fun ( 𝐹 ↾ { 𝐴 } ) ) ) |
23 |
|
funressnbrafv2 |
⊢ ( ( ( 𝐴 ∈ dom 𝐹 ∧ 𝐵 ∈ 𝑊 ) ∧ Fun ( 𝐹 ↾ { 𝐴 } ) ) → ( 𝐴 𝐹 𝐵 → ( 𝐹 '''' 𝐴 ) = 𝐵 ) ) |
24 |
22 23
|
syl |
⊢ ( ( 𝐹 defAt 𝐴 ∧ 𝐵 ∈ 𝑊 ) → ( 𝐴 𝐹 𝐵 → ( 𝐹 '''' 𝐴 ) = 𝐵 ) ) |
25 |
15 24
|
impbid |
⊢ ( ( 𝐹 defAt 𝐴 ∧ 𝐵 ∈ 𝑊 ) → ( ( 𝐹 '''' 𝐴 ) = 𝐵 ↔ 𝐴 𝐹 𝐵 ) ) |