Metamath Proof Explorer


Theorem dfatafv2ex

Description: The alternate function value at a class A is always a set if the function/class F is defined at A . (Contributed by AV, 6-Sep-2022)

Ref Expression
Assertion dfatafv2ex ( 𝐹 defAt 𝐴 → ( 𝐹 '''' 𝐴 ) ∈ V )

Proof

Step Hyp Ref Expression
1 dfatafv2iota ( 𝐹 defAt 𝐴 → ( 𝐹 '''' 𝐴 ) = ( ℩ 𝑥 𝐴 𝐹 𝑥 ) )
2 iotaex ( ℩ 𝑥 𝐴 𝐹 𝑥 ) ∈ V
3 1 2 eqeltrdi ( 𝐹 defAt 𝐴 → ( 𝐹 '''' 𝐴 ) ∈ V )