Metamath Proof Explorer


Theorem dfatafv2ex

Description: The alternate function value at a class A is always a set if the function/class F is defined at A . (Contributed by AV, 6-Sep-2022)

Ref Expression
Assertion dfatafv2ex FdefAtAF''''AV

Proof

Step Hyp Ref Expression
1 dfatafv2iota FdefAtAF''''A=ιx|AFx
2 iotaex ιx|AFxV
3 1 2 eqeltrdi FdefAtAF''''AV