Description: Equivalence of function value and ordered pair membership, analogous to fnopfvb or funopfvb . (Contributed by AV, 6-Sep-2022)
Ref | Expression | ||
---|---|---|---|
Assertion | dfatopafv2b | ⊢ ( ( 𝐹 defAt 𝐴 ∧ 𝐵 ∈ 𝑊 ) → ( ( 𝐹 '''' 𝐴 ) = 𝐵 ↔ 〈 𝐴 , 𝐵 〉 ∈ 𝐹 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfatbrafv2b | ⊢ ( ( 𝐹 defAt 𝐴 ∧ 𝐵 ∈ 𝑊 ) → ( ( 𝐹 '''' 𝐴 ) = 𝐵 ↔ 𝐴 𝐹 𝐵 ) ) | |
2 | df-br | ⊢ ( 𝐴 𝐹 𝐵 ↔ 〈 𝐴 , 𝐵 〉 ∈ 𝐹 ) | |
3 | 1 2 | bitrdi | ⊢ ( ( 𝐹 defAt 𝐴 ∧ 𝐵 ∈ 𝑊 ) → ( ( 𝐹 '''' 𝐴 ) = 𝐵 ↔ 〈 𝐴 , 𝐵 〉 ∈ 𝐹 ) ) |