Metamath Proof Explorer


Theorem funbrafv2

Description: The second argument of a binary relation on a function is the function's value, analogous to funbrfv . (Contributed by AV, 6-Sep-2022)

Ref Expression
Assertion funbrafv2 ( Fun 𝐹 → ( 𝐴 𝐹 𝐵 → ( 𝐹 '''' 𝐴 ) = 𝐵 ) )

Proof

Step Hyp Ref Expression
1 funrel ( Fun 𝐹 → Rel 𝐹 )
2 brrelex2 ( ( Rel 𝐹𝐴 𝐹 𝐵 ) → 𝐵 ∈ V )
3 1 2 sylan ( ( Fun 𝐹𝐴 𝐹 𝐵 ) → 𝐵 ∈ V )
4 breq2 ( 𝑥 = 𝐵 → ( 𝐴 𝐹 𝑥𝐴 𝐹 𝐵 ) )
5 4 anbi2d ( 𝑥 = 𝐵 → ( ( Fun 𝐹𝐴 𝐹 𝑥 ) ↔ ( Fun 𝐹𝐴 𝐹 𝐵 ) ) )
6 eqeq2 ( 𝑥 = 𝐵 → ( ( 𝐹 '''' 𝐴 ) = 𝑥 ↔ ( 𝐹 '''' 𝐴 ) = 𝐵 ) )
7 5 6 imbi12d ( 𝑥 = 𝐵 → ( ( ( Fun 𝐹𝐴 𝐹 𝑥 ) → ( 𝐹 '''' 𝐴 ) = 𝑥 ) ↔ ( ( Fun 𝐹𝐴 𝐹 𝐵 ) → ( 𝐹 '''' 𝐴 ) = 𝐵 ) ) )
8 funeu ( ( Fun 𝐹𝐴 𝐹 𝑥 ) → ∃! 𝑥 𝐴 𝐹 𝑥 )
9 tz6.12-1-afv2 ( ( 𝐴 𝐹 𝑥 ∧ ∃! 𝑥 𝐴 𝐹 𝑥 ) → ( 𝐹 '''' 𝐴 ) = 𝑥 )
10 8 9 sylan2 ( ( 𝐴 𝐹 𝑥 ∧ ( Fun 𝐹𝐴 𝐹 𝑥 ) ) → ( 𝐹 '''' 𝐴 ) = 𝑥 )
11 10 anabss7 ( ( Fun 𝐹𝐴 𝐹 𝑥 ) → ( 𝐹 '''' 𝐴 ) = 𝑥 )
12 7 11 vtoclg ( 𝐵 ∈ V → ( ( Fun 𝐹𝐴 𝐹 𝐵 ) → ( 𝐹 '''' 𝐴 ) = 𝐵 ) )
13 3 12 mpcom ( ( Fun 𝐹𝐴 𝐹 𝐵 ) → ( 𝐹 '''' 𝐴 ) = 𝐵 )
14 13 ex ( Fun 𝐹 → ( 𝐴 𝐹 𝐵 → ( 𝐹 '''' 𝐴 ) = 𝐵 ) )