| Step | Hyp | Ref | Expression | 
						
							| 1 |  | funrel | ⊢ ( Fun  𝐹  →  Rel  𝐹 ) | 
						
							| 2 |  | brrelex2 | ⊢ ( ( Rel  𝐹  ∧  𝐴 𝐹 𝐵 )  →  𝐵  ∈  V ) | 
						
							| 3 | 1 2 | sylan | ⊢ ( ( Fun  𝐹  ∧  𝐴 𝐹 𝐵 )  →  𝐵  ∈  V ) | 
						
							| 4 |  | breq2 | ⊢ ( 𝑥  =  𝐵  →  ( 𝐴 𝐹 𝑥  ↔  𝐴 𝐹 𝐵 ) ) | 
						
							| 5 | 4 | anbi2d | ⊢ ( 𝑥  =  𝐵  →  ( ( Fun  𝐹  ∧  𝐴 𝐹 𝑥 )  ↔  ( Fun  𝐹  ∧  𝐴 𝐹 𝐵 ) ) ) | 
						
							| 6 |  | eqeq2 | ⊢ ( 𝑥  =  𝐵  →  ( ( 𝐹 '''' 𝐴 )  =  𝑥  ↔  ( 𝐹 '''' 𝐴 )  =  𝐵 ) ) | 
						
							| 7 | 5 6 | imbi12d | ⊢ ( 𝑥  =  𝐵  →  ( ( ( Fun  𝐹  ∧  𝐴 𝐹 𝑥 )  →  ( 𝐹 '''' 𝐴 )  =  𝑥 )  ↔  ( ( Fun  𝐹  ∧  𝐴 𝐹 𝐵 )  →  ( 𝐹 '''' 𝐴 )  =  𝐵 ) ) ) | 
						
							| 8 |  | funeu | ⊢ ( ( Fun  𝐹  ∧  𝐴 𝐹 𝑥 )  →  ∃! 𝑥 𝐴 𝐹 𝑥 ) | 
						
							| 9 |  | tz6.12-1-afv2 | ⊢ ( ( 𝐴 𝐹 𝑥  ∧  ∃! 𝑥 𝐴 𝐹 𝑥 )  →  ( 𝐹 '''' 𝐴 )  =  𝑥 ) | 
						
							| 10 | 8 9 | sylan2 | ⊢ ( ( 𝐴 𝐹 𝑥  ∧  ( Fun  𝐹  ∧  𝐴 𝐹 𝑥 ) )  →  ( 𝐹 '''' 𝐴 )  =  𝑥 ) | 
						
							| 11 | 10 | anabss7 | ⊢ ( ( Fun  𝐹  ∧  𝐴 𝐹 𝑥 )  →  ( 𝐹 '''' 𝐴 )  =  𝑥 ) | 
						
							| 12 | 7 11 | vtoclg | ⊢ ( 𝐵  ∈  V  →  ( ( Fun  𝐹  ∧  𝐴 𝐹 𝐵 )  →  ( 𝐹 '''' 𝐴 )  =  𝐵 ) ) | 
						
							| 13 | 3 12 | mpcom | ⊢ ( ( Fun  𝐹  ∧  𝐴 𝐹 𝐵 )  →  ( 𝐹 '''' 𝐴 )  =  𝐵 ) | 
						
							| 14 | 13 | ex | ⊢ ( Fun  𝐹  →  ( 𝐴 𝐹 𝐵  →  ( 𝐹 '''' 𝐴 )  =  𝐵 ) ) |