| Step | Hyp | Ref | Expression | 
						
							| 1 |  | funrel |  |-  ( Fun F -> Rel F ) | 
						
							| 2 |  | brrelex2 |  |-  ( ( Rel F /\ A F B ) -> B e. _V ) | 
						
							| 3 | 1 2 | sylan |  |-  ( ( Fun F /\ A F B ) -> B e. _V ) | 
						
							| 4 |  | breq2 |  |-  ( x = B -> ( A F x <-> A F B ) ) | 
						
							| 5 | 4 | anbi2d |  |-  ( x = B -> ( ( Fun F /\ A F x ) <-> ( Fun F /\ A F B ) ) ) | 
						
							| 6 |  | eqeq2 |  |-  ( x = B -> ( ( F '''' A ) = x <-> ( F '''' A ) = B ) ) | 
						
							| 7 | 5 6 | imbi12d |  |-  ( x = B -> ( ( ( Fun F /\ A F x ) -> ( F '''' A ) = x ) <-> ( ( Fun F /\ A F B ) -> ( F '''' A ) = B ) ) ) | 
						
							| 8 |  | funeu |  |-  ( ( Fun F /\ A F x ) -> E! x A F x ) | 
						
							| 9 |  | tz6.12-1-afv2 |  |-  ( ( A F x /\ E! x A F x ) -> ( F '''' A ) = x ) | 
						
							| 10 | 8 9 | sylan2 |  |-  ( ( A F x /\ ( Fun F /\ A F x ) ) -> ( F '''' A ) = x ) | 
						
							| 11 | 10 | anabss7 |  |-  ( ( Fun F /\ A F x ) -> ( F '''' A ) = x ) | 
						
							| 12 | 7 11 | vtoclg |  |-  ( B e. _V -> ( ( Fun F /\ A F B ) -> ( F '''' A ) = B ) ) | 
						
							| 13 | 3 12 | mpcom |  |-  ( ( Fun F /\ A F B ) -> ( F '''' A ) = B ) | 
						
							| 14 | 13 | ex |  |-  ( Fun F -> ( A F B -> ( F '''' A ) = B ) ) |