Metamath Proof Explorer


Theorem funbrafv2

Description: The second argument of a binary relation on a function is the function's value, analogous to funbrfv . (Contributed by AV, 6-Sep-2022)

Ref Expression
Assertion funbrafv2
|- ( Fun F -> ( A F B -> ( F '''' A ) = B ) )

Proof

Step Hyp Ref Expression
1 funrel
 |-  ( Fun F -> Rel F )
2 brrelex2
 |-  ( ( Rel F /\ A F B ) -> B e. _V )
3 1 2 sylan
 |-  ( ( Fun F /\ A F B ) -> B e. _V )
4 breq2
 |-  ( x = B -> ( A F x <-> A F B ) )
5 4 anbi2d
 |-  ( x = B -> ( ( Fun F /\ A F x ) <-> ( Fun F /\ A F B ) ) )
6 eqeq2
 |-  ( x = B -> ( ( F '''' A ) = x <-> ( F '''' A ) = B ) )
7 5 6 imbi12d
 |-  ( x = B -> ( ( ( Fun F /\ A F x ) -> ( F '''' A ) = x ) <-> ( ( Fun F /\ A F B ) -> ( F '''' A ) = B ) ) )
8 funeu
 |-  ( ( Fun F /\ A F x ) -> E! x A F x )
9 tz6.12-1-afv2
 |-  ( ( A F x /\ E! x A F x ) -> ( F '''' A ) = x )
10 8 9 sylan2
 |-  ( ( A F x /\ ( Fun F /\ A F x ) ) -> ( F '''' A ) = x )
11 10 anabss7
 |-  ( ( Fun F /\ A F x ) -> ( F '''' A ) = x )
12 7 11 vtoclg
 |-  ( B e. _V -> ( ( Fun F /\ A F B ) -> ( F '''' A ) = B ) )
13 3 12 mpcom
 |-  ( ( Fun F /\ A F B ) -> ( F '''' A ) = B )
14 13 ex
 |-  ( Fun F -> ( A F B -> ( F '''' A ) = B ) )