Metamath Proof Explorer


Theorem fnbrafv2b

Description: Equivalence of function value and binary relation, analogous to fnbrfvb . (Contributed by AV, 6-Sep-2022)

Ref Expression
Assertion fnbrafv2b
|- ( ( F Fn A /\ B e. A ) -> ( ( F '''' B ) = C <-> B F C ) )

Proof

Step Hyp Ref Expression
1 eqid
 |-  ( F '''' B ) = ( F '''' B )
2 fundmdfat
 |-  ( ( Fun F /\ B e. dom F ) -> F defAt B )
3 2 funfni
 |-  ( ( F Fn A /\ B e. A ) -> F defAt B )
4 dfatafv2ex
 |-  ( F defAt B -> ( F '''' B ) e. _V )
5 3 4 syl
 |-  ( ( F Fn A /\ B e. A ) -> ( F '''' B ) e. _V )
6 eqeq2
 |-  ( x = ( F '''' B ) -> ( ( F '''' B ) = x <-> ( F '''' B ) = ( F '''' B ) ) )
7 breq2
 |-  ( x = ( F '''' B ) -> ( B F x <-> B F ( F '''' B ) ) )
8 6 7 bibi12d
 |-  ( x = ( F '''' B ) -> ( ( ( F '''' B ) = x <-> B F x ) <-> ( ( F '''' B ) = ( F '''' B ) <-> B F ( F '''' B ) ) ) )
9 8 adantl
 |-  ( ( ( F Fn A /\ B e. A ) /\ x = ( F '''' B ) ) -> ( ( ( F '''' B ) = x <-> B F x ) <-> ( ( F '''' B ) = ( F '''' B ) <-> B F ( F '''' B ) ) ) )
10 fneu
 |-  ( ( F Fn A /\ B e. A ) -> E! x B F x )
11 tz6.12c-afv2
 |-  ( E! x B F x -> ( ( F '''' B ) = x <-> B F x ) )
12 10 11 syl
 |-  ( ( F Fn A /\ B e. A ) -> ( ( F '''' B ) = x <-> B F x ) )
13 5 9 12 vtocld
 |-  ( ( F Fn A /\ B e. A ) -> ( ( F '''' B ) = ( F '''' B ) <-> B F ( F '''' B ) ) )
14 1 13 mpbii
 |-  ( ( F Fn A /\ B e. A ) -> B F ( F '''' B ) )
15 breq2
 |-  ( ( F '''' B ) = C -> ( B F ( F '''' B ) <-> B F C ) )
16 14 15 syl5ibcom
 |-  ( ( F Fn A /\ B e. A ) -> ( ( F '''' B ) = C -> B F C ) )
17 fnfun
 |-  ( F Fn A -> Fun F )
18 funbrafv2
 |-  ( Fun F -> ( B F C -> ( F '''' B ) = C ) )
19 17 18 syl
 |-  ( F Fn A -> ( B F C -> ( F '''' B ) = C ) )
20 19 adantr
 |-  ( ( F Fn A /\ B e. A ) -> ( B F C -> ( F '''' B ) = C ) )
21 16 20 impbid
 |-  ( ( F Fn A /\ B e. A ) -> ( ( F '''' B ) = C <-> B F C ) )