| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eqid |  |-  ( F '''' B ) = ( F '''' B ) | 
						
							| 2 |  | fundmdfat |  |-  ( ( Fun F /\ B e. dom F ) -> F defAt B ) | 
						
							| 3 | 2 | funfni |  |-  ( ( F Fn A /\ B e. A ) -> F defAt B ) | 
						
							| 4 |  | dfatafv2ex |  |-  ( F defAt B -> ( F '''' B ) e. _V ) | 
						
							| 5 | 3 4 | syl |  |-  ( ( F Fn A /\ B e. A ) -> ( F '''' B ) e. _V ) | 
						
							| 6 |  | eqeq2 |  |-  ( x = ( F '''' B ) -> ( ( F '''' B ) = x <-> ( F '''' B ) = ( F '''' B ) ) ) | 
						
							| 7 |  | breq2 |  |-  ( x = ( F '''' B ) -> ( B F x <-> B F ( F '''' B ) ) ) | 
						
							| 8 | 6 7 | bibi12d |  |-  ( x = ( F '''' B ) -> ( ( ( F '''' B ) = x <-> B F x ) <-> ( ( F '''' B ) = ( F '''' B ) <-> B F ( F '''' B ) ) ) ) | 
						
							| 9 | 8 | adantl |  |-  ( ( ( F Fn A /\ B e. A ) /\ x = ( F '''' B ) ) -> ( ( ( F '''' B ) = x <-> B F x ) <-> ( ( F '''' B ) = ( F '''' B ) <-> B F ( F '''' B ) ) ) ) | 
						
							| 10 |  | fneu |  |-  ( ( F Fn A /\ B e. A ) -> E! x B F x ) | 
						
							| 11 |  | tz6.12c-afv2 |  |-  ( E! x B F x -> ( ( F '''' B ) = x <-> B F x ) ) | 
						
							| 12 | 10 11 | syl |  |-  ( ( F Fn A /\ B e. A ) -> ( ( F '''' B ) = x <-> B F x ) ) | 
						
							| 13 | 5 9 12 | vtocld |  |-  ( ( F Fn A /\ B e. A ) -> ( ( F '''' B ) = ( F '''' B ) <-> B F ( F '''' B ) ) ) | 
						
							| 14 | 1 13 | mpbii |  |-  ( ( F Fn A /\ B e. A ) -> B F ( F '''' B ) ) | 
						
							| 15 |  | breq2 |  |-  ( ( F '''' B ) = C -> ( B F ( F '''' B ) <-> B F C ) ) | 
						
							| 16 | 14 15 | syl5ibcom |  |-  ( ( F Fn A /\ B e. A ) -> ( ( F '''' B ) = C -> B F C ) ) | 
						
							| 17 |  | fnfun |  |-  ( F Fn A -> Fun F ) | 
						
							| 18 |  | funbrafv2 |  |-  ( Fun F -> ( B F C -> ( F '''' B ) = C ) ) | 
						
							| 19 | 17 18 | syl |  |-  ( F Fn A -> ( B F C -> ( F '''' B ) = C ) ) | 
						
							| 20 | 19 | adantr |  |-  ( ( F Fn A /\ B e. A ) -> ( B F C -> ( F '''' B ) = C ) ) | 
						
							| 21 | 16 20 | impbid |  |-  ( ( F Fn A /\ B e. A ) -> ( ( F '''' B ) = C <-> B F C ) ) |