Step |
Hyp |
Ref |
Expression |
1 |
|
eqid |
|- ( F '''' B ) = ( F '''' B ) |
2 |
|
fundmdfat |
|- ( ( Fun F /\ B e. dom F ) -> F defAt B ) |
3 |
2
|
funfni |
|- ( ( F Fn A /\ B e. A ) -> F defAt B ) |
4 |
|
dfatafv2ex |
|- ( F defAt B -> ( F '''' B ) e. _V ) |
5 |
3 4
|
syl |
|- ( ( F Fn A /\ B e. A ) -> ( F '''' B ) e. _V ) |
6 |
|
eqeq2 |
|- ( x = ( F '''' B ) -> ( ( F '''' B ) = x <-> ( F '''' B ) = ( F '''' B ) ) ) |
7 |
|
breq2 |
|- ( x = ( F '''' B ) -> ( B F x <-> B F ( F '''' B ) ) ) |
8 |
6 7
|
bibi12d |
|- ( x = ( F '''' B ) -> ( ( ( F '''' B ) = x <-> B F x ) <-> ( ( F '''' B ) = ( F '''' B ) <-> B F ( F '''' B ) ) ) ) |
9 |
8
|
adantl |
|- ( ( ( F Fn A /\ B e. A ) /\ x = ( F '''' B ) ) -> ( ( ( F '''' B ) = x <-> B F x ) <-> ( ( F '''' B ) = ( F '''' B ) <-> B F ( F '''' B ) ) ) ) |
10 |
|
fneu |
|- ( ( F Fn A /\ B e. A ) -> E! x B F x ) |
11 |
|
tz6.12c-afv2 |
|- ( E! x B F x -> ( ( F '''' B ) = x <-> B F x ) ) |
12 |
10 11
|
syl |
|- ( ( F Fn A /\ B e. A ) -> ( ( F '''' B ) = x <-> B F x ) ) |
13 |
5 9 12
|
vtocld |
|- ( ( F Fn A /\ B e. A ) -> ( ( F '''' B ) = ( F '''' B ) <-> B F ( F '''' B ) ) ) |
14 |
1 13
|
mpbii |
|- ( ( F Fn A /\ B e. A ) -> B F ( F '''' B ) ) |
15 |
|
breq2 |
|- ( ( F '''' B ) = C -> ( B F ( F '''' B ) <-> B F C ) ) |
16 |
14 15
|
syl5ibcom |
|- ( ( F Fn A /\ B e. A ) -> ( ( F '''' B ) = C -> B F C ) ) |
17 |
|
fnfun |
|- ( F Fn A -> Fun F ) |
18 |
|
funbrafv2 |
|- ( Fun F -> ( B F C -> ( F '''' B ) = C ) ) |
19 |
17 18
|
syl |
|- ( F Fn A -> ( B F C -> ( F '''' B ) = C ) ) |
20 |
19
|
adantr |
|- ( ( F Fn A /\ B e. A ) -> ( B F C -> ( F '''' B ) = C ) ) |
21 |
16 20
|
impbid |
|- ( ( F Fn A /\ B e. A ) -> ( ( F '''' B ) = C <-> B F C ) ) |