| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eqid | ⊢ ( 𝐹 '''' 𝐵 )  =  ( 𝐹 '''' 𝐵 ) | 
						
							| 2 |  | fundmdfat | ⊢ ( ( Fun  𝐹  ∧  𝐵  ∈  dom  𝐹 )  →  𝐹  defAt  𝐵 ) | 
						
							| 3 | 2 | funfni | ⊢ ( ( 𝐹  Fn  𝐴  ∧  𝐵  ∈  𝐴 )  →  𝐹  defAt  𝐵 ) | 
						
							| 4 |  | dfatafv2ex | ⊢ ( 𝐹  defAt  𝐵  →  ( 𝐹 '''' 𝐵 )  ∈  V ) | 
						
							| 5 | 3 4 | syl | ⊢ ( ( 𝐹  Fn  𝐴  ∧  𝐵  ∈  𝐴 )  →  ( 𝐹 '''' 𝐵 )  ∈  V ) | 
						
							| 6 |  | eqeq2 | ⊢ ( 𝑥  =  ( 𝐹 '''' 𝐵 )  →  ( ( 𝐹 '''' 𝐵 )  =  𝑥  ↔  ( 𝐹 '''' 𝐵 )  =  ( 𝐹 '''' 𝐵 ) ) ) | 
						
							| 7 |  | breq2 | ⊢ ( 𝑥  =  ( 𝐹 '''' 𝐵 )  →  ( 𝐵 𝐹 𝑥  ↔  𝐵 𝐹 ( 𝐹 '''' 𝐵 ) ) ) | 
						
							| 8 | 6 7 | bibi12d | ⊢ ( 𝑥  =  ( 𝐹 '''' 𝐵 )  →  ( ( ( 𝐹 '''' 𝐵 )  =  𝑥  ↔  𝐵 𝐹 𝑥 )  ↔  ( ( 𝐹 '''' 𝐵 )  =  ( 𝐹 '''' 𝐵 )  ↔  𝐵 𝐹 ( 𝐹 '''' 𝐵 ) ) ) ) | 
						
							| 9 | 8 | adantl | ⊢ ( ( ( 𝐹  Fn  𝐴  ∧  𝐵  ∈  𝐴 )  ∧  𝑥  =  ( 𝐹 '''' 𝐵 ) )  →  ( ( ( 𝐹 '''' 𝐵 )  =  𝑥  ↔  𝐵 𝐹 𝑥 )  ↔  ( ( 𝐹 '''' 𝐵 )  =  ( 𝐹 '''' 𝐵 )  ↔  𝐵 𝐹 ( 𝐹 '''' 𝐵 ) ) ) ) | 
						
							| 10 |  | fneu | ⊢ ( ( 𝐹  Fn  𝐴  ∧  𝐵  ∈  𝐴 )  →  ∃! 𝑥 𝐵 𝐹 𝑥 ) | 
						
							| 11 |  | tz6.12c-afv2 | ⊢ ( ∃! 𝑥 𝐵 𝐹 𝑥  →  ( ( 𝐹 '''' 𝐵 )  =  𝑥  ↔  𝐵 𝐹 𝑥 ) ) | 
						
							| 12 | 10 11 | syl | ⊢ ( ( 𝐹  Fn  𝐴  ∧  𝐵  ∈  𝐴 )  →  ( ( 𝐹 '''' 𝐵 )  =  𝑥  ↔  𝐵 𝐹 𝑥 ) ) | 
						
							| 13 | 5 9 12 | vtocld | ⊢ ( ( 𝐹  Fn  𝐴  ∧  𝐵  ∈  𝐴 )  →  ( ( 𝐹 '''' 𝐵 )  =  ( 𝐹 '''' 𝐵 )  ↔  𝐵 𝐹 ( 𝐹 '''' 𝐵 ) ) ) | 
						
							| 14 | 1 13 | mpbii | ⊢ ( ( 𝐹  Fn  𝐴  ∧  𝐵  ∈  𝐴 )  →  𝐵 𝐹 ( 𝐹 '''' 𝐵 ) ) | 
						
							| 15 |  | breq2 | ⊢ ( ( 𝐹 '''' 𝐵 )  =  𝐶  →  ( 𝐵 𝐹 ( 𝐹 '''' 𝐵 )  ↔  𝐵 𝐹 𝐶 ) ) | 
						
							| 16 | 14 15 | syl5ibcom | ⊢ ( ( 𝐹  Fn  𝐴  ∧  𝐵  ∈  𝐴 )  →  ( ( 𝐹 '''' 𝐵 )  =  𝐶  →  𝐵 𝐹 𝐶 ) ) | 
						
							| 17 |  | fnfun | ⊢ ( 𝐹  Fn  𝐴  →  Fun  𝐹 ) | 
						
							| 18 |  | funbrafv2 | ⊢ ( Fun  𝐹  →  ( 𝐵 𝐹 𝐶  →  ( 𝐹 '''' 𝐵 )  =  𝐶 ) ) | 
						
							| 19 | 17 18 | syl | ⊢ ( 𝐹  Fn  𝐴  →  ( 𝐵 𝐹 𝐶  →  ( 𝐹 '''' 𝐵 )  =  𝐶 ) ) | 
						
							| 20 | 19 | adantr | ⊢ ( ( 𝐹  Fn  𝐴  ∧  𝐵  ∈  𝐴 )  →  ( 𝐵 𝐹 𝐶  →  ( 𝐹 '''' 𝐵 )  =  𝐶 ) ) | 
						
							| 21 | 16 20 | impbid | ⊢ ( ( 𝐹  Fn  𝐴  ∧  𝐵  ∈  𝐴 )  →  ( ( 𝐹 '''' 𝐵 )  =  𝐶  ↔  𝐵 𝐹 𝐶 ) ) |