Metamath Proof Explorer


Theorem fnbrafv2b

Description: Equivalence of function value and binary relation, analogous to fnbrfvb . (Contributed by AV, 6-Sep-2022)

Ref Expression
Assertion fnbrafv2b ( ( 𝐹 Fn 𝐴𝐵𝐴 ) → ( ( 𝐹 '''' 𝐵 ) = 𝐶𝐵 𝐹 𝐶 ) )

Proof

Step Hyp Ref Expression
1 eqid ( 𝐹 '''' 𝐵 ) = ( 𝐹 '''' 𝐵 )
2 fundmdfat ( ( Fun 𝐹𝐵 ∈ dom 𝐹 ) → 𝐹 defAt 𝐵 )
3 2 funfni ( ( 𝐹 Fn 𝐴𝐵𝐴 ) → 𝐹 defAt 𝐵 )
4 dfatafv2ex ( 𝐹 defAt 𝐵 → ( 𝐹 '''' 𝐵 ) ∈ V )
5 3 4 syl ( ( 𝐹 Fn 𝐴𝐵𝐴 ) → ( 𝐹 '''' 𝐵 ) ∈ V )
6 eqeq2 ( 𝑥 = ( 𝐹 '''' 𝐵 ) → ( ( 𝐹 '''' 𝐵 ) = 𝑥 ↔ ( 𝐹 '''' 𝐵 ) = ( 𝐹 '''' 𝐵 ) ) )
7 breq2 ( 𝑥 = ( 𝐹 '''' 𝐵 ) → ( 𝐵 𝐹 𝑥𝐵 𝐹 ( 𝐹 '''' 𝐵 ) ) )
8 6 7 bibi12d ( 𝑥 = ( 𝐹 '''' 𝐵 ) → ( ( ( 𝐹 '''' 𝐵 ) = 𝑥𝐵 𝐹 𝑥 ) ↔ ( ( 𝐹 '''' 𝐵 ) = ( 𝐹 '''' 𝐵 ) ↔ 𝐵 𝐹 ( 𝐹 '''' 𝐵 ) ) ) )
9 8 adantl ( ( ( 𝐹 Fn 𝐴𝐵𝐴 ) ∧ 𝑥 = ( 𝐹 '''' 𝐵 ) ) → ( ( ( 𝐹 '''' 𝐵 ) = 𝑥𝐵 𝐹 𝑥 ) ↔ ( ( 𝐹 '''' 𝐵 ) = ( 𝐹 '''' 𝐵 ) ↔ 𝐵 𝐹 ( 𝐹 '''' 𝐵 ) ) ) )
10 fneu ( ( 𝐹 Fn 𝐴𝐵𝐴 ) → ∃! 𝑥 𝐵 𝐹 𝑥 )
11 tz6.12c-afv2 ( ∃! 𝑥 𝐵 𝐹 𝑥 → ( ( 𝐹 '''' 𝐵 ) = 𝑥𝐵 𝐹 𝑥 ) )
12 10 11 syl ( ( 𝐹 Fn 𝐴𝐵𝐴 ) → ( ( 𝐹 '''' 𝐵 ) = 𝑥𝐵 𝐹 𝑥 ) )
13 5 9 12 vtocld ( ( 𝐹 Fn 𝐴𝐵𝐴 ) → ( ( 𝐹 '''' 𝐵 ) = ( 𝐹 '''' 𝐵 ) ↔ 𝐵 𝐹 ( 𝐹 '''' 𝐵 ) ) )
14 1 13 mpbii ( ( 𝐹 Fn 𝐴𝐵𝐴 ) → 𝐵 𝐹 ( 𝐹 '''' 𝐵 ) )
15 breq2 ( ( 𝐹 '''' 𝐵 ) = 𝐶 → ( 𝐵 𝐹 ( 𝐹 '''' 𝐵 ) ↔ 𝐵 𝐹 𝐶 ) )
16 14 15 syl5ibcom ( ( 𝐹 Fn 𝐴𝐵𝐴 ) → ( ( 𝐹 '''' 𝐵 ) = 𝐶𝐵 𝐹 𝐶 ) )
17 fnfun ( 𝐹 Fn 𝐴 → Fun 𝐹 )
18 funbrafv2 ( Fun 𝐹 → ( 𝐵 𝐹 𝐶 → ( 𝐹 '''' 𝐵 ) = 𝐶 ) )
19 17 18 syl ( 𝐹 Fn 𝐴 → ( 𝐵 𝐹 𝐶 → ( 𝐹 '''' 𝐵 ) = 𝐶 ) )
20 19 adantr ( ( 𝐹 Fn 𝐴𝐵𝐴 ) → ( 𝐵 𝐹 𝐶 → ( 𝐹 '''' 𝐵 ) = 𝐶 ) )
21 16 20 impbid ( ( 𝐹 Fn 𝐴𝐵𝐴 ) → ( ( 𝐹 '''' 𝐵 ) = 𝐶𝐵 𝐹 𝐶 ) )