Step |
Hyp |
Ref |
Expression |
1 |
|
eqid |
⊢ ( 𝐹 '''' 𝐵 ) = ( 𝐹 '''' 𝐵 ) |
2 |
|
fundmdfat |
⊢ ( ( Fun 𝐹 ∧ 𝐵 ∈ dom 𝐹 ) → 𝐹 defAt 𝐵 ) |
3 |
2
|
funfni |
⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴 ) → 𝐹 defAt 𝐵 ) |
4 |
|
dfatafv2ex |
⊢ ( 𝐹 defAt 𝐵 → ( 𝐹 '''' 𝐵 ) ∈ V ) |
5 |
3 4
|
syl |
⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴 ) → ( 𝐹 '''' 𝐵 ) ∈ V ) |
6 |
|
eqeq2 |
⊢ ( 𝑥 = ( 𝐹 '''' 𝐵 ) → ( ( 𝐹 '''' 𝐵 ) = 𝑥 ↔ ( 𝐹 '''' 𝐵 ) = ( 𝐹 '''' 𝐵 ) ) ) |
7 |
|
breq2 |
⊢ ( 𝑥 = ( 𝐹 '''' 𝐵 ) → ( 𝐵 𝐹 𝑥 ↔ 𝐵 𝐹 ( 𝐹 '''' 𝐵 ) ) ) |
8 |
6 7
|
bibi12d |
⊢ ( 𝑥 = ( 𝐹 '''' 𝐵 ) → ( ( ( 𝐹 '''' 𝐵 ) = 𝑥 ↔ 𝐵 𝐹 𝑥 ) ↔ ( ( 𝐹 '''' 𝐵 ) = ( 𝐹 '''' 𝐵 ) ↔ 𝐵 𝐹 ( 𝐹 '''' 𝐵 ) ) ) ) |
9 |
8
|
adantl |
⊢ ( ( ( 𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴 ) ∧ 𝑥 = ( 𝐹 '''' 𝐵 ) ) → ( ( ( 𝐹 '''' 𝐵 ) = 𝑥 ↔ 𝐵 𝐹 𝑥 ) ↔ ( ( 𝐹 '''' 𝐵 ) = ( 𝐹 '''' 𝐵 ) ↔ 𝐵 𝐹 ( 𝐹 '''' 𝐵 ) ) ) ) |
10 |
|
fneu |
⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴 ) → ∃! 𝑥 𝐵 𝐹 𝑥 ) |
11 |
|
tz6.12c-afv2 |
⊢ ( ∃! 𝑥 𝐵 𝐹 𝑥 → ( ( 𝐹 '''' 𝐵 ) = 𝑥 ↔ 𝐵 𝐹 𝑥 ) ) |
12 |
10 11
|
syl |
⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴 ) → ( ( 𝐹 '''' 𝐵 ) = 𝑥 ↔ 𝐵 𝐹 𝑥 ) ) |
13 |
5 9 12
|
vtocld |
⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴 ) → ( ( 𝐹 '''' 𝐵 ) = ( 𝐹 '''' 𝐵 ) ↔ 𝐵 𝐹 ( 𝐹 '''' 𝐵 ) ) ) |
14 |
1 13
|
mpbii |
⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴 ) → 𝐵 𝐹 ( 𝐹 '''' 𝐵 ) ) |
15 |
|
breq2 |
⊢ ( ( 𝐹 '''' 𝐵 ) = 𝐶 → ( 𝐵 𝐹 ( 𝐹 '''' 𝐵 ) ↔ 𝐵 𝐹 𝐶 ) ) |
16 |
14 15
|
syl5ibcom |
⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴 ) → ( ( 𝐹 '''' 𝐵 ) = 𝐶 → 𝐵 𝐹 𝐶 ) ) |
17 |
|
fnfun |
⊢ ( 𝐹 Fn 𝐴 → Fun 𝐹 ) |
18 |
|
funbrafv2 |
⊢ ( Fun 𝐹 → ( 𝐵 𝐹 𝐶 → ( 𝐹 '''' 𝐵 ) = 𝐶 ) ) |
19 |
17 18
|
syl |
⊢ ( 𝐹 Fn 𝐴 → ( 𝐵 𝐹 𝐶 → ( 𝐹 '''' 𝐵 ) = 𝐶 ) ) |
20 |
19
|
adantr |
⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴 ) → ( 𝐵 𝐹 𝐶 → ( 𝐹 '''' 𝐵 ) = 𝐶 ) ) |
21 |
16 20
|
impbid |
⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴 ) → ( ( 𝐹 '''' 𝐵 ) = 𝐶 ↔ 𝐵 𝐹 𝐶 ) ) |