| Step |
Hyp |
Ref |
Expression |
| 1 |
|
funrel |
⊢ ( Fun 𝐹 → Rel 𝐹 ) |
| 2 |
|
releldm |
⊢ ( ( Rel 𝐹 ∧ 𝐴 𝐹 𝐵 ) → 𝐴 ∈ dom 𝐹 ) |
| 3 |
1 2
|
sylan |
⊢ ( ( Fun 𝐹 ∧ 𝐴 𝐹 𝐵 ) → 𝐴 ∈ dom 𝐹 ) |
| 4 |
|
eldmg |
⊢ ( 𝐴 ∈ dom 𝐹 → ( 𝐴 ∈ dom 𝐹 ↔ ∃ 𝑦 𝐴 𝐹 𝑦 ) ) |
| 5 |
4
|
ibi |
⊢ ( 𝐴 ∈ dom 𝐹 → ∃ 𝑦 𝐴 𝐹 𝑦 ) |
| 6 |
3 5
|
syl |
⊢ ( ( Fun 𝐹 ∧ 𝐴 𝐹 𝐵 ) → ∃ 𝑦 𝐴 𝐹 𝑦 ) |
| 7 |
|
funmo |
⊢ ( Fun 𝐹 → ∃* 𝑦 𝐴 𝐹 𝑦 ) |
| 8 |
7
|
adantr |
⊢ ( ( Fun 𝐹 ∧ 𝐴 𝐹 𝐵 ) → ∃* 𝑦 𝐴 𝐹 𝑦 ) |
| 9 |
|
moeu |
⊢ ( ∃* 𝑦 𝐴 𝐹 𝑦 ↔ ( ∃ 𝑦 𝐴 𝐹 𝑦 → ∃! 𝑦 𝐴 𝐹 𝑦 ) ) |
| 10 |
8 9
|
sylib |
⊢ ( ( Fun 𝐹 ∧ 𝐴 𝐹 𝐵 ) → ( ∃ 𝑦 𝐴 𝐹 𝑦 → ∃! 𝑦 𝐴 𝐹 𝑦 ) ) |
| 11 |
6 10
|
mpd |
⊢ ( ( Fun 𝐹 ∧ 𝐴 𝐹 𝐵 ) → ∃! 𝑦 𝐴 𝐹 𝑦 ) |