Metamath Proof Explorer


Theorem funeu2

Description: There is exactly one value of a function. (Contributed by NM, 3-Aug-1994)

Ref Expression
Assertion funeu2 ( ( Fun 𝐹 ∧ ⟨ 𝐴 , 𝐵 ⟩ ∈ 𝐹 ) → ∃! 𝑦𝐴 , 𝑦 ⟩ ∈ 𝐹 )

Proof

Step Hyp Ref Expression
1 df-br ( 𝐴 𝐹 𝐵 ↔ ⟨ 𝐴 , 𝐵 ⟩ ∈ 𝐹 )
2 funeu ( ( Fun 𝐹𝐴 𝐹 𝐵 ) → ∃! 𝑦 𝐴 𝐹 𝑦 )
3 df-br ( 𝐴 𝐹 𝑦 ↔ ⟨ 𝐴 , 𝑦 ⟩ ∈ 𝐹 )
4 3 eubii ( ∃! 𝑦 𝐴 𝐹 𝑦 ↔ ∃! 𝑦𝐴 , 𝑦 ⟩ ∈ 𝐹 )
5 2 4 sylib ( ( Fun 𝐹𝐴 𝐹 𝐵 ) → ∃! 𝑦𝐴 , 𝑦 ⟩ ∈ 𝐹 )
6 1 5 sylan2br ( ( Fun 𝐹 ∧ ⟨ 𝐴 , 𝐵 ⟩ ∈ 𝐹 ) → ∃! 𝑦𝐴 , 𝑦 ⟩ ∈ 𝐹 )